| dc.contributor.author | Moses Khakame Maraka | |
| dc.date.accessioned | 2025-12-03T09:59:56Z | |
| dc.date.available | 2025-12-03T09:59:56Z | |
| dc.date.issued | 2025-06 | |
| dc.identifier.issn | 2456-477X | |
| dc.identifier.uri | http://hdl.handle.net/123456789/18467 | |
| dc.description.abstract | The rank and subdegrees of the action of 𝐴𝑛 Γ 𝐴𝑛 Γ 𝐴𝑛 Γ 𝐴𝑛 acting on 𝑊[2] Γ 𝑋 [2] Γ 𝑌 [2] Γ 𝑍 [2] are determined in this paper. Using combinatorics and mathematical induction, the rank of 𝐴𝑛 Γ 𝐴𝑛 Γ 𝐴𝑛 Γ 𝐴𝑛, ( β 𝑛 β₯ 4) acting on 𝑊[2] Γ 𝑋 [2] Γ 𝑌 [2] Γ 𝑍 [2] , is 2 4 and the subdegrees are: 1, 4 (( 𝑛! (𝑛β2)! )β 1) , 6 (( 𝑛! (𝑛β2)! )β 1) 2 , 4 (( 𝑛! (𝑛β2)! )β 1) 3 and (( 𝑛! (𝑛β2)! )β 1) 4 . | en_US |
| dc.language.iso | en | en_US |
| dc.subject | Group action; cartesian product; orbit; rank and subdegrees | en_US |
| dc.title | Ranks and Subdegrees of the Action of the Product of Four Alternating Groups on the Cartesian Product of Four Sets of Ordered Pairs | en_US |
| dc.type | Article | en_US |