

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE
UNIVERSITY EXAMINATIONS FOR THE
DEGREE OF BACHELOR OF SCIENCE AND
BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 2213

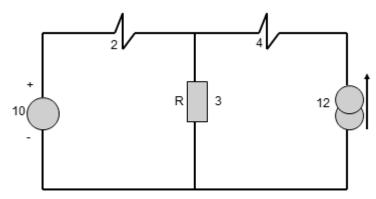
COURSE TITLE: ELECTRICAL CIRCUITS

DATE: 16TH APRIL, 2019 TIME: __0830-1030 HRS

INSTRUCTIONS

Answer Question ONE and any other TWO.

- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

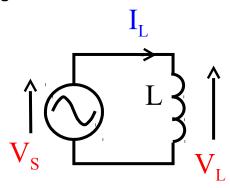

This paper consists of __4_ printed pages.

QUESTION ONE:

[30]

- a) State three advantages of connecting loads in parallel to series in electrical circuits. [3]
- b) Explain the term 'network' as used in electrical circuits. [2]
- c) Find the instantaneous circuit current if a voltage $v = 100\sin(1000t)$ V is applied to:
 - (i) a pure resistive circuit of $R=50 \Omega$ [2]
 - (ii) a pure inductive circuit of L=0.02 H [3]
 - (iii) a pure capacitive circuit of C=10 μ F [3]
- d) By Superposition Principle find P_R in figure 1. [3]

Figure 1

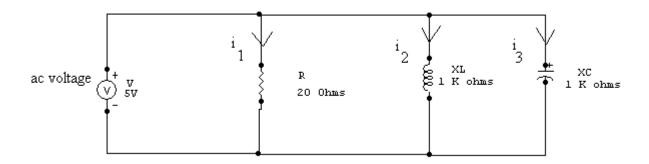

- e) Explain the difference between active and passive power. [4]
- f) Find the current phasor if a 60 Hz 220∠30° V ac voltage is applied to
 - (i) a pure resistive circuit of R=10 Ω [2]
 - (ii) a pure inductive circuit of L=0.2 H [2]
 - (iii) a pure capacitive circuit of C=10 μ F [2]
- g) State the following theorems:
 - (i) Norton's theorem states [2]
 - (ii) Thevenin's theorem [2]

QUESTION TWO:

[20]

a) Show that for the circuit shown on fig.2 , Current lags voltage by 90° $\ \ [4]$

Figure 2



b) Refer to the circuit of Fig 3, find:

(i) the total impedance, Z_T	[7]
(ii) the supply current. I _T	[3]

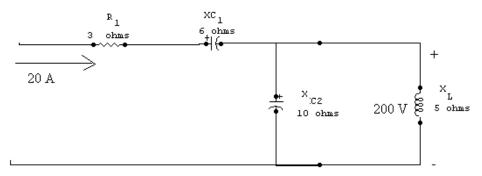
(iii) the branch currents, I_1 , I_2 and I_3 . [6]

Figure 3

QUESTION THREE:

[20 marks]

a) Explain the following


•9			
(i) Capacitive reactance		[2]	
(ii)	Inductive reactance	[2]	
(iii)	Impedance		[2]
(iv)	Phasor	[2]	
	Page 4 of 6		

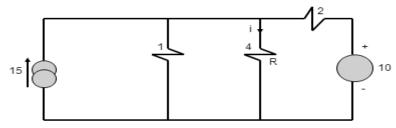
- **b)** An rms voltage of 10.0 V with a frequency of 1.00 kHz is applied to a 0.395-mF capacitor.
 - (i) What is the rms current in this circuit? [3]
 - (ii) By what factor does the current change if the frequency of the voltage is doubled?

[1]

- (iii) Calculate the current for a frequency of 2.00 kHz. [1]
- c) For the circuit in fig.4
 - (i) Compute P_T and Q_T for the following circuit. [5]
 - (ii) Reduce the circuit to its simplest form [2]

Figure 4

QUESTION FOUR: [20 marks]


- a) Explain the steps involved in applying the Mesh Analysis in solving electric circuits[5]
- b) Use Mesh Analysis in fig 5 to find:
 - (i) The current i through resistor R.

[7]

(ii) Power through resistor R.

[3]

Figure 5

d) Explain the procedure for the application of the Millman's Theorem [5]

//End//