

MAASAI MARA

 UNIVERSITY
REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

> COURSE CODE: PHY 2214 COURSE TITLE: CLASSICAL MECHANICS

DATE: $15^{\text {TH }}$ APRIL 2019
TIME: 8.30AM
-10.30AM
INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Question one carries 30 marks while each of the others carries 20 marks.
3. Credit will be awarded for clear explanations and illustrations.

This paper consists of 2 printed pages. Please turn over.

QUESTION ONE

a) Show that for a single particle with constant mass the equation of motion implies the following differential equation for kinetic energy: $\frac{d T}{d t}=F . v$, while if the mass varies with time the corresponding equation is $\frac{d(m T)}{d t}=F . p \quad$ (5marks)
b) Prove that the magnitude R of the position vector for the center of mass from an arbitrary origin is given by the equation $\quad M^{2} R^{2}=M \sum_{i} m_{i} r_{i}^{2}-\frac{1}{2} \sum_{i, j} m_{i} m_{j} r_{i j}{ }^{2}$
(5marks)
c) Differentiate giving an example in any case between :
i. Holonomic constraint and non holonomic constraint (3marks)
ii. Rhenomic and scleronomic constraints
(3marks)
d) Set up Lagrangian for a simple pendulum and obtain an equation describing its motion.
(6marks)
e) Prove that the shortest distance between two points in space is a straight line
(6marks)
f) What are cyclic coordinates
(2marks)

QUESTION TWO

a) State Hamilton's principle (3marks)
b) Define a central field
(2marks)
c) Find the equation of motion of a particle in a central field (6marks)
d) Show that by the conservation law of energy of a closed system, energy remains constant in time. (5marks)
e) Consider a projectile of mass m projected upwards. Find its equation of motion.
(4marks)

QUESTION THREE

a) Differentiate between conservative forces and nonconservative forces
(2marks)
b) State advantages of variation principles formulation (3marks)
c) Find the minimum surface of revolution for a curve passing between two fixed points and revolving about the y-axis.
(7marks)
d) Find the equation of motion of a solid cylinder that rolls down an incline plane.
(8marks)

QUESTION FOUR

a) State D'Alembert's principle
(3marks)
b) Prove that the transformation $Q=p$ and $P=-q$ is canonical (3marks)
c) Consider a uniform thin disk that rolls without on a horizontal plane. A horizontal force is applied to the centre of the disk and in a direction parallel to the plane of the disk. Derive Lagrange's equations and find the generalized force.
(7marks)
d) Find the motion of two bodies interacting via a central force (7marks)
//END

