

REGULAR UNIVERSITY EXAMINATION 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR SCIENCE (MATHEMATICS), APPLIED STATISTICS WITH COMPUTING AND EDUCATION (SCIENCE, ARTS AND SPECIAL NEEDS)

COURSE CODE: MAT 2212 COURSE TITLE: REAL ANALYSIS I

DATE 18TH APRIL 2019 TIME: 1100 - 1300HRS

INSTRUCTIONS TO CANDIDATES

1. This paper contains **FOUR** (4) questions

- 2. Answer question **ONE (1)** and any other **TWO (2)** questions
- 3. Do not forget to write your Registration Number.

QUESTION 1 (30MARKS)

- a) Define power set P(X) of a set X and hence show that the power set P(of of is uncountable
 5marks
- b) Given that $A = \sum_{n \in A} : n \bigoplus_{n \in A}$. Determine $\sup_{n \in A} A$, $\inf_{n \in A} A$ and state

whether the maximum and minimum of *A* exists. **4marks**

- c) Show that if $x \circledast 0$, then $x^2 > 0$ and hence deduce that 1 > 0**4marks**
- d) Prove that for a subset A of \clubsuit that is bounded below $\inf A$ is unique 4**marks**
- e) Prove that $\sqrt{2}$ is irrational. **5marks**
- f) Using the ratio test determine whether the following series

converge or diverge $\sqrt[n^2]{2^n}$

3 marks

g) Define the function $\rho: \mathcal{O} \oplus \mathcal{O}$ by $\rho(x, y) = |x_1 - y_1| + |x_2 - y_2|$ where $x = (x_1, x_2), y = (y_1, y_2)$. Show that ρ is a metric on \mathcal{O} **5marks**

QUESTION 2 (20MKS)

- a) Let A and B be non-void subsets of ♥ that are bounded above.
 Show that sup(A+B) = sup(A) + sup(B)
 5marks
- b) Show that the empty set \u03c6 is a subset of any other set
 3marks

- c) Show that every convergent sequence is Cauchy 5marks
- d) Define a continuous function and hence determine whether the

function f: P P P defined by $f(x) = \textcircled{Q}_{if x=0}^{if x \textcircled{P}}$ is continuous at x = 0

3marks

e) Show that every Cauchy sequence is bounded **4marks**

QUESTION 3 (20MKS)

f) Show that a point $p \, {}^{\bullet} X$ is a limit point of $E \, {}^{\bullet} X$ iff there exists a sequence $(x_n)^{\bullet}$ of distinct points of E with

$$x_n \bullet p \ (\forall n \bullet \bullet)$$
 such that $\lim_{n \bullet \bullet} x_n = p$

10marks

g) Show that if the sequences (x_n) and (y_n) are convergent and $x_n \bigotimes y_n$ for all $n \bigotimes n$, then $\lim_{x \bigotimes n} x_n \bigotimes_{x \bigotimes n} y_n$

5marks

h) If $f(x) = \bigotimes_{x=0}^{x \otimes x} \text{ find } f(x)$. 5marks

QUESTION 4 (20MKS)

a) Test for convergence in the following series

b) Classify the monotonic sequences below.

i.
$$x_n = n^3$$

ii. $x_n = (-1)^{n+1}$
iii. $x_n = \frac{1}{n}$
iv. $x_n = 2 \quad \forall n$
4marks

c) Binary operation * on the set of all real numbers **R** is defined by x*y = |x-y|. Show that * is commutative but not associative

ŶŶ

2marks

- d) Define the terms
 - i. A metric space **1mark**
 - ii. Neighbourhood **1mark**
 - iii. A convergent sequence **1mark**
 - iv. Monotonic sequences **1mark**
 - v. Uniformly continuous function **1mark**

//END