

# MAASAI MARA UNIVERSITY

### REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

### SCHOOL OF SCIENCE BACHELOR OF SCIENCE

## COURSE CODE: MAT 417 COURSE TITLE: FLUID MECHANICS II

 DATE:
 25<sup>™</sup> APRIL 2019

 1430 - 1630 HRS

TIME:

### **INSTRUCTIONS TO CANDIDATES**

- 1. Answer Question **ONE** and any other **two** questions.
- 2. All Examination Rules Apply.

#### **QUESTION ONE**

| Defin                                                                  | e the following terms                              |                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i)                                                                     | Free-Vortex flow                                   | (2                                                                                                                                                                                                                                                  |
|                                                                        | marks)                                             |                                                                                                                                                                                                                                                     |
| ii)                                                                    | Source and Sink                                    | (2                                                                                                                                                                                                                                                  |
|                                                                        | marks)                                             |                                                                                                                                                                                                                                                     |
| iii)                                                                   | Conformal transformation                           | (2                                                                                                                                                                                                                                                  |
|                                                                        | marks)                                             |                                                                                                                                                                                                                                                     |
| State                                                                  | the blasius theorem                                | (3                                                                                                                                                                                                                                                  |
| marks)                                                                 |                                                    |                                                                                                                                                                                                                                                     |
| c) Write down the navier stokes equations for cartesian coordinates (6 |                                                    |                                                                                                                                                                                                                                                     |
| marks)                                                                 |                                                    |                                                                                                                                                                                                                                                     |
|                                                                        | i)<br>ii)<br>iii)<br>State<br><b>mari</b><br>Write | <ul> <li>ii) marks)</li> <li>iii) Source and Sink</li> <li>marks)</li> <li>iii) Conformal transformation</li> <li>marks)</li> <li>State the blasius theorem</li> <li>marks)</li> <li>Write down the navier stokes equations for cartesia</li> </ul> |

d) Show that the two families of curves

$$\phi(x, y) = c_1$$
  
$$\psi(x, y) = c_2$$

Intersect at right angles.

#### marks)

e) If the stream lines (path of the fluid particles) of a flow around a corner are  $M^{xy = constant}$ . Find their orthogonal trajectories (equipotential).

#### (5 marks)

f) Describe the transformation  $w = e^z$ , where w = u + iv and z = x + iy. (5 marks)

#### **QUESTION TWO**

a) A viscous fluid is flowing between two concentric circular cylinders of

radii  $a \text{ and } b \ (b > a)$  rotating with angular velocities  $\omega_1 \text{ and } \omega_2$  respectively. Show that the velocity distribution is

$$v = \frac{1}{b^2 - a^2} \sum_{i=1}^{\infty} \omega_2 - a^2 \omega_1 r - \frac{a^2 b^2}{r} (\omega_2 - \omega_1)$$

#### (11 marks)

(5

**b)** Determine the velocity distribution of the flow of the fluid through an infinite circular pipe of radius *a* taking that the velocity vector is

 $\mathbf{q=}\left( \,0,0,u\right) \,$  . Also find the skin friction at the pipe.

#### (9 marks)

#### **QUESTION THREE**

a) A fluid of density  $\rho$  is confined over a plane y=0. Let t=0, the plate

y=0 (which is initially at rest) starts moving with velocity U along the x axis. Find the velocity distribution of the fluid using laplace

x – axis. Find the velocity distribution of the fluid using laplace

#### transformation method. (11 marks)

b) Describle the plane coutte flow and plane poiseullie flow. (9 marks)

#### **QUESTION FOUR**

a) Show that for an incomplessible steady flow with constant viscosity

$$u(y) = y\frac{U}{h} + \frac{h^2}{2\mu} \underbrace{\widehat{\Psi}}_{h} \underbrace{\widehat{\Psi}}_{h}$$

Satisfy the equation of motion, where the body force is neglected.

h,U and  $\frac{dp}{dx}$  are constants and p = p(x)

#### (10 marks)

b) Find the equations of stream lines due to uniform line sources of

strength m per unit length through the points  ${}^{A\left(-a,0
ight),B\left(a,0
ight)}$  and a uniform line sink of strength -m per unit length through the origin.

#### (10 marks)

//END