MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS
2018/2019 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE

COURSE CODE: MAT 417
 COURSE TITLE: FLUID MECHANICS II

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other two questions.
2. All Examination Rules Apply.

QUESTION ONE

a) Define the following terms
i) Free-Vortex flow
ii) Source and Sink
iii) Conformal transformation

marks)

b) State the blasius theorem marks)
c) Write down the navier stokes equations for cartesian coordinates (6 marks)
d) Show that the two families of curves

$$
\begin{aligned}
& \phi(x, y)=c_{1} \\
& \psi(x, y)=c_{2}
\end{aligned}
$$

Intersect at right angles.

marks)

e) If the stream lines (path of the fluid particles) of a flow around a corner are $M^{x y}=$ constant . Find their orthogonal trajectories (equipotential).

(5 marks)

f) Describe the transformation $w=e^{z}$, where $w=u+i v$ and $z=x+i y$. marks)

QUESTION TWO

a) A viscous fluid is flowing between two concentric circular cylinders of radii a and $b(b>a)$ rotating with angular velocities ω_{1} and ω_{2} respectively. Show that the velocity distribution is

$$
\left.v=\frac{1}{b^{2}-a^{2}} b^{2} \omega_{2}-a^{2} \omega_{1}\right) r-\frac{a^{2} b^{2}}{r}\left(\omega_{2}-\omega_{1}\right)
$$

(11 marks)
b) Determine the velocity distribution of the flow of the fluid through an infinite circular pipe of radius a taking that the velocity vector is $\mathbf{q}=(0,0, u)$. Also find the skin friction at the pipe.

(9 marks)

QUESTION THREE

a) A fluid of density ρ is confined over a plane $y=0$. Let $t=0$, the plate $y=0$ (which is initially at rest) starts moving with velocity U along the x - axis. Find the velocity distribution of the fluid using laplace
transformation method.

(11 marks)

b) Describle the plane coutte flow and plane poiseullie flow. (9 marks)

QUESTION FOUR

a) Show that for an incomplessible steady flow with constant viscosity

$$
\begin{aligned}
& u(y)=y \frac{U}{h}+\frac{h^{2}}{2 \mu} \hat{2}+\frac{y}{h} \\
& v=0=w
\end{aligned}
$$

Satisfy the equation of motion, where the body force is neglected.
h, U and $\frac{d p}{d x}$ are constants and $p=p(x)$
(10 marks)
b) Find the equations of stream lines due to uniform line sources of strength m per unit length through the points $A(-a, 0), B(a, 0)$ and a uniform line sink of strength -m per unit length through the origin.

(10 marks)

//END

