

MAIN EXAMINATION 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR SCIENCE IN MATHEMATICS

MAT 416: FUNCTIONAL ANALYSIS I

DATE: 26TH APRIL 2019 TIME: 0830 -

1030 HRS

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains **FOUR** (4) questions
- 2. Answer question **ONE (1)** and any other **TWO (2)** questions
- 3. Do not forget to write your Registration Number.

QUESTION ONE (30MARKS)

- a) Define the following terms
 - i) A Banach space

1mark

Strongly convergence of a sequence ii)

1mark

iii) A Hilbert space

1 mark

Radius of convergence of a series iv)

1 mark

- b) Show that an integral operator is a bounded linear transformation. 5marks
- c) Show that $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$ $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}$ orthonormal set

5marks

d) Define a normed linear space and show that if χ is an inner product space,

then
$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$
 defines a norm on X

5marks

e) In the polynomial space p^2 the inner product is given as

$$\langle u,h\rangle = \bigoplus_{t=0}^{\infty} t h(t) dt$$
 . if $u(t) = t+2$ and $h(t) = t^2 - 2t + 3$. Find

 $\langle u, h \rangle$

ii. ||u|| iii. ||h||

8marks

e) Given that $x = \langle x, z_{\alpha} \rangle z_{\alpha}$ $\forall x \rangle H$. Show that $||x||^2 = \langle x, z_{\alpha} \rangle |^2$ 3 marks

QUESTION TWO (20MARKS)

- a) Show that the differential operator $T:C_{[a,b]} C_{[a,b]}$ defined by Tx(t)=x is an unbounded linear transformation **5marks**
- b) State and prove the Reisz representation theorem **10marks**
- c) Let $a \ \textcircled{\bullet} \ \textcircled{\bullet}$. Define $f : \ \textcircled{\bullet} \ \textcircled{\bullet} \ \textcircled{\bullet}$ by $f(x) = \langle x, a \rangle$ for all $x \ \textcircled{\bullet} \ \textcircled{\bullet}$. Show that f is a bounded linear functional with $\|f\| = \|a\|$ **5marks**

QUESTION THREE (20MARKS)

- a) Define bounded linear transformation.3marks
- b) Show that $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$
- c) If $(\langle . \rangle, X)$ is an inner product space, show that for all $x, y \diamondsuit X$ we have $|\langle x, y \rangle|^2 \diamondsuit \langle x, y \rangle \langle x, y \rangle$

7marks

3marks

d) Show that E is closed with respect to the Hilbert space H if and only if it is a complete orthonormal subset7marks

QUESTION FOUR (20MARKS)

a) Find the radius of convergence of the series

- b) State and prove the projection theorem6marks
- c) Show that u for all $f,g \not\in L_2(a,b)$ the $\langle f,g \rangle = \not\oint (x) \ \overline{g}(x) \, dx$ defines an inner product on $L_2(a,b)$.

4marks

d) Suppose X and Y are Banach spaces and that T is a bounded linear operator from X to Y . If T maps X on to Y, show that T(G) is open in Y whenever G is open in X.

5marks

//END