

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE

COURSE CODE: MAT 414

COURSE TITLE: TOPOLOGY II

DATE: 18-4-2019

13:00HRS

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions

TIME: 11:00-

QUESTION ONE – 30 MARKS

- a) Define a T_1 -space, hence deduce whether the topological space (X, τ) where $\tau = \{X, \diamondsuit, \{a, b\}, \{b, c\}\}$ is a topology defined on $X = \{a, b, c\}$ is a T_1 -space. (4 marks)
- **b)** Prove that every T_4 -space is a Tychonoff space. (6 marks)
- c) Define first countability property, hence show that every metric space satisfies first countability axiom.
 (5 marks)
- d) Show that any finite subset of a topological space (X, τ) is compact. (5 marks)
- e) Show that connectedness is a topological property. (5 marks)
- f) Define a homotopy between continuous functions f and g defined on R.

 Hence, show that if $f,g:R \curvearrowright R$ are any two continuous real functions and $F:R \curvearrowright [0,1] \curvearrowright R$ is a function defined by $F(x,t)=(1-t) \curvearrowright [x] (x)+t \curvearrowright [x]$, then F is a homotopy between f and g.

 (5 marks)

QUESTION TWO – 20 MARKS

- a) Prove that every subspace of a second countable space is second countable. (3 marks)
- b) Prove that the class C(X,R) of all real-valued continuous functions on a completely regular T_1 -space separates points. (5 marks)
- c) Define a separable space, hence show that the discrete space (X,τ) is separable if and only if X is countable. (4 marks)
- d) Prove that a topological space (X, τ) is a T_1 -space if and only if every singleton set of X is closed. (8 marks)

QUESTION THREE - 20 MARKS

a) Show that any compact subset of a T_2 -space is closed. (3 marks)

- **b)** Show that if the function f is homotopic to g(f; g), then g is also homotopic to f(g; f). (5 marks)
- c) Prove that a continuous image of a path connected set is path connected. (5 marks)
- d) Prove that regularity is a hereditary property. (7 marks)

QUESTION FOUR – 20 MARKS

- a) Prove that the union of finite compact subsets of a topological space is also compact.
 (5 marks)
- **b)** Differentiate between a T_3 -space and T_4 -space, hence show that every T_4 -space is a T_3 -space. (8 marks)
- c) Show that first countability property is a topological property. (7 marks)

//END