

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR TWO SEMESTER

SCHOOL OF SCIENCE Bsc. MATHEMATICS

COURSE CODE: MAT 411

COURSE TITLE: FIELD THEORY

DATE: 26TH APRIL 2019

1430 - 1630 HRS

TIME:

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. All Examination Rules Apply.

Question 1 [30 marks]

- 1 (a). State the meaning and give an example of:
 - i. a field of characteristic zero.
 - ii. an infinite field of characteristic p.
 - iii. an algebraic extension of a field F. [6 marks]
- 1 (b). Determine the vector space dimension of the field $Q(\sqrt{2},i)$ over Q and exhibit three different bases. [6 marks]
- 1 (c). Prove that $Q(\sqrt{5}, \sqrt{11}) = Q(\sqrt{5} + \sqrt{11})$ [4 marks]
- 1 (d). Express $\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2}$ in terms of elementary symmetric functions in x_1, x_2, x_3 . [4 marks]
- 1 (e). Determine the splitting field of:
 - i. The polynomial x^2+x+1 over Q.
 - ii. The polynomial x^2+x+1 over Z. [5 marks]
- 1 (f). Give the definition of a solvable group and state its significance in Field Theory and solution of polynomial equations. [5 marks]

Question 2 [20 marks]

E,F and K are three fields such that F is a finite extension of E and K is a finite extension of F.

i. Prove that

$$[K:E] = [F:E][K:F].$$

- ii. Illustrate the result in (i) with E=Q and F and K specified with [F:E]=3 and [K:F]=2.
- iii. Deduce from (i) that if a and b are algebraic over E of degree m and n respectively, then $\frac{a}{b}$ is algebraic over E of degree $\leq mn$.

Question 3 [20 marks]

3 (a). Factorize

$$x^9-1$$
 in $Q[x]$

Hence, or otherwise determine the splitting field of x^6+x^3+1 over Q.

- 3 (b). Let β denote the complex number $(\sqrt[4]{2}+i)^{-1}$.
 - i. Determine the minimal polynomial of β over Q.

- ii. Prove that $Q(\sqrt[4]{2},i)=Q(\beta)$.
- iii. Write down two other elements a and b in $Q(\sqrt[4]{2},i)$ such that

$$Q(\beta)=Q(a)=Q(b).$$

Question 4 [20 marks]

- 4 (a). Show that the polynomial x^3+x+1 is irreducible over Z_5 .
- (b). Show that every element of the field $\frac{Z_5[x]}{(x^3+x+1)Z_5[x]}$ is of the form

$$r_0 + r_1 x + r_2 x^2 + M$$
 where $M = (x^3 + x + 1)Z_5[x]$.

(C). Let α be a root of x^3+x+1 , now considered as a polynomial in Q[x].

Express $\frac{1}{\alpha}$ and $\frac{1}{\alpha^2}$ as polynomials in α .

Question 5 [20 marks]

Let K be an extension of F where K and F are fields and let G(K,F) denote the group of automorphisms of K that leave F fixed elementwise.

- a. Prove that
 - i. G(K,F) is a subgroup of the group of all automorphisms of K.
 - ii. $o(G(K,F)) \leq [K:F]$
- b. Give an example where the inequality in a(ii) is strict and an example where the equality holds.

//END