

JOURNAL OF ADVANCED STUDIES IN TOPOLOGY

journal homepage: http://www.m-sciences.com/index.php?journal=jast

Separation axioms on function spaces defined on bitopological spaces

N. E. Muturi^{a,*}, J. M. Khalagai^a, G. P. Pokhariyal^a

^aSchool of Mathematics, University of Nairobi, P. O. Box 00100-30197, Nairobi, Kenya.

Abstract

In this paper, we generalize separation axioms to the function space $p - C_{\omega}(Y,Z)$ and study how they relate to separation axioms defined on the spaces (Z, δ_i) for $i = 1, 2, (Z, \delta_1, \delta_2), 1 - C_{\zeta}(Y,Z)$ and $2 - C_{\zeta}(Y,Z)$. We show that the space $p - C_{\omega}(Y,Z)$ is ${}_{p}T_{o}, {}_{p}T_{1}, {}_{p}T_{2}$ and ${}_{p}$ regular, if the spaces (Z, δ_1) and (Z, δ_2) are both $T_{o}, T_{1},$ T_{2} and regular respectively. The space $p - C_{\omega}(Y,Z)$ is also shown to be ${}_{p}T_{o}, {}_{p}T_{1}, {}_{p}T_{2}$ and ${}_{p}$ regular, if the space (Z, δ_1, δ_2) is $p - T_{o}, p - T_{1}, p - T_{2}$ and p-regular respectively. Finally, the space $p - C_{\omega}(Y,Z)$ is shown to be ${}_{p}T_{o}, {}_{p}T_{1}, {}_{p}T_{2}$ and ${}_{p}$ regular, if and only if the spaces $1 - C_{\zeta}(Y,Z)$ and $2 - C_{\zeta}(Y,Z)$ are both T_{0}, T_{1}, T_{2} , and only if the spaces $1 - C_{\zeta}(Y,Z)$ and $2 - C_{\zeta}(Y,Z)$ are both regular respectively.

Keywords: bitopological space, function space, separation axiom. 2010 *MSC*: 54A10, 54C35, 54D10, 54E55.

1. Introduction

The set of all continuous functions from a topological space *Y* to a topological space *Z* is denoted by C(Y, Z). Several topologies have been defined on this set as seen in [3], [1] and [2]. The non empty set *Y* when assigned two unique topologies τ_1 and τ_2 , forms a bitopological space (Y, τ_1, τ_2) (see [5]). A number of function spaces have been defined on sets of continuous functions between two bitopological spaces (Y, τ_1, τ_2) and (Z, δ_1, δ_2) , examples of such function spaces include; $s - C_{\tau}(Y, Z)$, $p - C_{\omega}(Y, Z)$, $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ (see [8]).

Separation axioms allows one to separates points from points, points from closed sets and closed sets from each other using open sets. These axioms play a critical role in topology in that, apart from characterizing continuous mappings, they also provide restrictive conditions on which other topological properties and structures can be defined on a given non empty set. Studies of separation axioms on function spaces are covered in [1], [4] and [12]. Pairwise separation axioms have been introduced on bitopological spaces in [5], while in [6] and [11], comparisons have been made between separation axioms defined on the spaces

*Corresponding author

Received: 4 July 2018 Accepted: 30 July 2018 http://dx.doi.org/10.20454/jast.2018.1454 2090-8288 ©2018 Modern Science Publishers. All rights reserved.

Email address: edward.njuguna@gmail.com (N. E. Muturi)

 (Y, τ_1) and (Y, τ_2) , (Y, τ_1, τ_2) and $(Y, \tau_1 \lor \tau_2)$. In this paper, we generalize separation axioms to the function space $p - C_{\omega}(Y, Z)$, and study how they relate to separation axioms defined on topological spaces (Z, δ_i) for i = 1, 2, pairwise separation axioms defined on bitopological space (Z, δ_i, δ_2) , as well as separation axioms defined on function spaces $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$.

2. Preliminaries

The following definitions are considered in this paper.

Definition 2.1. A function $f : (Y, \tau_1, \tau_2) \longrightarrow (Z, \delta_1, \delta_2)$, is said to be pairwise continuous (p-continuous) or $\tau_1 - \delta_1$ and $\tau_2 - \delta_2$ continuous, if the induced functions $f : (Y, \tau_1) \longrightarrow (Z, \delta_1)$ and $f : (Y, \tau_2) \longrightarrow (Z, \delta_2)$ are both continuous (see [10]).

Definition 2.2. The collection $S((U, V), (A, B))_p = \{f \in p - C(Y, Z) : f(U) \subset V \text{ and } f(A) \subset B\}$ of sets, for *U* open in τ_1 , *V* open in δ_1 , *A* open in τ_2 and *B* open in δ_2 , forms the subbasis for the open-open topology ω on p - C(Y, Z) (the set of all pairwise continuous functions). If *U* and *A* are compact subsets of *Y*, then $S((U, V), (A, B))_p$ forms the subbasis for compact open topology. The set of all pairwise continuous functions endowed with topology ω is denoted by $p - C_{\omega}(Y, Z)$ (see [9]).

Definition 2.3. The space (Y, τ_1, τ_2) is said to be pairwise $T_\circ (p - T_\circ)$, if for each pair of distinct points of *Y*, there is a τ_1 open set or τ_2 open set containing one of the points, but not the other (see [7]).

Definition 2.4. The space (Y, τ_1, τ_2) is said to be pairwise $T_1(p-T_1)$, if for each pair of distinct points $x, y \in Y$, there is a τ_1 open set U and a τ_2 open set V, such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$ (see [11]).

Definition 2.5. The space (Y, τ_1, τ_2) is said to be pairwise $T_2 (p - T_2)$, if for two distinct points $x, y \in Y$, there is a τ_1 open set U and τ_2 open set V, such that $x \in U, y \in V$ and $U \cap V = \phi$ (see [5]).

Definition 2.6. In the space (Y, τ_1, τ_2) , τ_1 is said to be regular with respect to τ_2 , if for each $y \in Y$ and τ_1 closed set *F* such that $y \notin F$, there exist τ_1 open set *U* and τ_2 open set *V* such that $x \in U, F \subset V$ and $U \cap V = \phi$. The space (Y, τ_1, τ_2) is said to be pairwise regular (*p*-regular), if it is both τ_1 regular with respect to τ_2 and τ_2 regular with respect to τ_1 (see [5]).

Let (Y, τ_1, τ_2) and (Z, δ_1, δ_2) be bitopological spaces, and let U_1 and U_2 be open sets in τ_1 , V_1 and V_2 be open sets in δ_1 , A_1 and A_2 be open sets in τ_2 and B_1 and B_2 be open sets in δ_2 . Let ${}_pT_i$ for i = 0, 1, 2 and ${}_p$ regular, denote separation axioms defined on $p - C_{\omega}(Y, Z)$, to differentiate them from pairwise separation axioms defined on bitopological space (Y, τ_1, τ_2) .

The following definitions are introduced.

Definition 2.7. A function space $p - C_{\omega}(Y, Z)$ is said to be a ${}_{p}T_{\circ}$ -space, if for any two distinct functions f and g in p - C(Y, Z), there exist an open set $S((U_{1}, V_{1})(A_{1}, B_{1}))_{p} = \{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1} \text{ and } f(A_{1}) \subset B_{1}\}$ neighborhood of f not containing g, or $S((U_{2}, V_{2})(A_{2}, B_{2}))_{p} = \{g \in p - C(Y, Z) : g(U_{2}) \subset V_{2} \text{ and } g(A_{2}) \subset B_{2}\}$ neighborhood of g not containing f.

Definition 2.8. A function space $p - C_{\omega}(Y, Z)$ is said to be a ${}_{p}T_{1}$ -space, if for any two distinct functions f and g in p - C(Y, Z), there exist open sets $S((U_{1}, V_{1})(A_{1}, B_{1}))_{p} = \{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1} \text{ and } f(A_{1}) \subset B_{1}\}$ neighborhood of f not containing g, and $S((U_{2}, V_{2})(A_{2}, B_{2}))_{p} = \{g \in p - C(Y, Z) : g(U_{2}) \subset V_{2} \text{ and } g(A_{2}) \subset B_{2}\}$ neighborhood of g not containing f.

Definition 2.9. A function space $p - C_{\omega}(Y, Z)$ is said to be a ${}_{p}T_{2}$ -space, if for any two distinct functions f and g in p - C(Y, Z), there exist disjoint open sets $S((U_{1}, V_{1})(A_{1}, B_{1}))_{p} = \{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1} \text{ and } f(A_{1}) \subset B_{1}\}$ and $S((U_{2}, V_{2})(A_{2}, B_{2}))_{p} = \{g \in p - C(Y, Z) : g(U_{2}) \subset V_{2} \text{ and } g(A_{2}) \subset B_{2}\}$ neighborhoods of f and g respectively.

Definition 2.10. A function space $p - C_{\omega}(Y, Z)$ is said to be a *p*regular space, if for any two distinct functions f and g in p - C(Y, Z) and a closed set $\overline{S((U, V)(A, B)}$ in p - C(Y, Z) such that $g \notin \overline{S(U, V)(A, B)}$, there exist disjoint open sets $S((U_1, V_1)(A_1, B_1))_p = \{f \in p - C(Y, Z) : f(U_1) \subset V_1 \text{ and } f(A_1) \subset B_1\}$ containing $\overline{S((U, V)(A, B)}$ and $S((U_2, V_2)(A_2, B_2))_p = \{g \in p - C(Y, Z) : g(U_2) \subset V_2 \text{ and } g(A_2) \subset B_2\}$ neighborhood of g.

3. Comparison of separation axioms defined on the spaces $p - C_{\omega}(Y, Z)$, (Z, δ_1) , (Z, δ_2) and (Z, δ_1, δ_2)

Let *P* denote a topological property, If both the topological spaces (Z, δ_1) and (Z, δ_2) , and both the function spaces $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ have the property P, then it will be denoted by b - P. In this section, we establish the relationship between ${}_{p}T_{o, p}T_{1, p}T_{2}$ and ${}_{p}$ regular separation axioms defined on the function space $p - C_{\omega}(Y, Z)$, and $b - T_{\circ}$, $b - T_1$, $b - T_2$ and b-regular separation axioms defined on the topological spaces (Z, δ_1) and (Z, δ_2) , as well as $p - T_0$, $p - T_1$, $p - T_2$ and *p*-regular separation axioms defined on bitopological space (Z, δ_1, δ_2). We provide proof for ${}_pT_2$ and ${}_p$ regularity on $p - C_{\omega}(Y, Z)$ whenever (Z, δ_1) and (Z, δ_2) are $b - T_2$ and b-regular spaces, and also ${}_{v}T_{\circ}, {}_{v}T_2$ and ${}_{v}$ regularity on $p - C_{\omega}(Y, Z)$, whenever (Z, δ_1, δ_2) is $p - T_0$, $p - T_2$ and *p*-regular space. The proofs for the other separation axioms can be done in a similar manner.

Theorem 3.1. Let (Z, δ_1) and (Z, δ_2) be $b - T_2$ spaces, then $p - C_{\omega}(Y, Z)$ is a ${}_{v}T_2$ space.

Proof. Let *f* and *g* be unique functions in p - C(Y, Z) such that for every $y \in Y$, $f(y) \neq g(y)$, and let (Z, δ_1) and (Z, δ_2) be $b - T_2$ spaces. Then there exist disjoint open sets $U_1 \in \delta_1$ and $V_1 \in \delta_1$ and also $U_2 \in \delta_2$ and $V_2 \in \delta_2$ such that $f(y) \in U_1$ and $g(y) \in V_1$, and also $f(y) \in U_2$ and $g(y) \in V_2$ respectively. Now, the disjoint open sets $S((\{y\}, U_1)(\{y\}, U_2))_p$ and $S((\{y\}, V_1)(\{y\}, V_2))_p$ in $p - C_{\omega}(Y, Z)$, are neighbourhoods of f and g respectively in the space $p - C_{\omega}(Y, Z)$. Therefore, the space $p - C_{\omega}(Y, Z)$ is a ${}_{p}T_{2}$ space. п

Theorem 3.2. Let the spaces (Z, δ_1) and (Z, δ_2) be *b*-regular, then $p - C_{\omega}(Y, Z)$ with compact open topology ω is a *p*regular space.

Proof. Let f and g be unique functions in p - C(Y, Z) such that $\forall y \in Y$ $f(y) \neq g(y)$ and let $S((U_i, V_i)(U_i, (V_i)))$ $= \{f \in p - C(Y, Z) : f(U_i) \subset V_i \text{ and } f(U_i) \subset V_i\} \text{ for } U_i \in \tau_1, V_i \in \delta_1, U_i \in \tau_2 \text{ and } V_i \in \delta_2 \text{ for } i, j = 1, 2, 3, 4..., n$ be the neighbourhood system for f. Since U_i and U_i are compact, then both $f(U_i)$ and $f(U_i)$ are also compact, and since (Z, δ_1) and (Z, δ_2) are b-regular spaces, then there exist open sets A_i and B_j in δ_1 and δ_2 respectively, for $i, j = 1, 2, 3, 4, \dots, n$, such that $f(U_i) \subset A_i, f(U_j) \subset B_j, A_i \subset V_i$ and $\overline{B_j} \subset V_j$. This implies that $S((U_i, A_i)(U_j, B_j)) \subset S((U_i, \overline{A_i})(U_j, \overline{B_j})) \subset S((U_i, V_i)(U_j, V_j))$. Suppose that $\overline{S((U_i, A_i)(U_j, B_j))} \subset S((U_i, \overline{A_i})(U_j, \overline{B_j})) \subset S((U_i, \overline{A_i})(U_j, \overline{A_i})(U_j, \overline{A_i}))$ $S((U_i, \overline{A}_i)(U_j, \overline{B}_j))$, let $g \notin S((U_i, V_i)(U_j, V_j))$, then it follows that $g \notin S((U_i, \overline{A}_i)(U_j, \overline{B}_j))$, implying further that for some point $y \in Y$, $g(y) \in \overline{A_i}^c$ and $g(y) \in \overline{B_j}^c$. Thus, $S((\{y\}, \overline{A_i}^c)(\{y\}, \overline{B_j}^c))$ is a neighbourhood system for *g* which does not intersect $S((U_i, \overline{A}_i)(U_j, \overline{B}_j))$. Since $\overline{S((U_i, A_i)(U_j, B_j))} \subset S((U_i, \overline{A}_i)(U_j, \overline{B}_j))$, then $\overline{S((U_i, A_i)(U_j, B_j))} \subset S((U_i, V_i)(U_j, V_j)).$ Therefore the sets $\bigcap_{i=1}^n S((\{y\}, \overline{A_i}^c)(\{y\}, \overline{B_j}^c))$ and $\bigcap_{i,j=1}^n S((U_i, V_i)(U_j, V_j))$ are disjoint open sets containing g and $\overline{\bigcap_{i=1}^n S((U_i, A_i)(U_j, B_j))}$ respectively, hence $p - C_{\omega}(Y, Z)$ is a p regular

space.

Theorem 3.3. Let (Z, δ_1, δ_2) be $p - T_\circ$ space, then $p - C_\omega(Y, Z)$ is a ${}_vT_\circ$ space.

Proof. Let *f* and *g* be unique functions in p - C(Y, Z) such that for every $y \in Y$, $f(y) \neq g(y)$, since (Z, δ_1, δ_2) is a $p - T_{\circ}$ space, then there exist an open set $U_1 \in \delta_1$ containing f(y) but not g(y) or $V_2 \in \delta_2$ containing g(y) but not f(y). Suppose there exist an open set $U_1 \in \delta_1$ containing f(y) but not g(y), then by pairwise continuity of *f*, we can find an open set $U_2 \in \delta_2$ also containing f(y) but not g(y). Suppose there exist an open set $V_2 \in \delta_2$ containing g(y) but not f(y), then by pairwise continuity of g, we can also find an open set $V_1 \in \delta_1$ containing g(y) but not f(y). Either way, there exist an open set $S((\{y\}, U_1)(\{y\}, U_2))_v$ in $p - C_\omega(Y, Z)$, neighbourhood of f not containing g, or an open set $S((\{y\}, V_1)(\{y\}, V_2))_p$ in $p - C_{\omega}(Y, Z)$, neighborhood of g not containing *f*. Therefore, the space $p - C_{\omega}(Y, Z)$ is a $_{v}T_{\circ}$ space.

Theorem 3.4. Let (Z, δ_1, δ_2) be totally disconnected $p - T_2$ space, then $p - C_{\omega}(Y, Z)$ is a ${}_{p}T_2$ space.

Proof. Let *f* and *g* be unique functions in p - C(Y, Z) such that for every $y \in Y$, $f(y) \neq g(y)$, since (Z, δ_1, δ_2) is a totally disconnected $p - T_2$ space, then there exist disjoint open sets $U_1 \in \delta_1$ and $V_2 \in \delta_2$ containing f(y) and g(y) respectively, such that $U_1 \cup V_2 = Y$. But since f and g are both $\tau_1 - \delta_1$ and $\tau_2 - \delta_2$ continuous, it follows that there exist open sets $U_2 \in \delta_2$ containing f(y) and $V_1 \in \delta_1$ containing g(y). Suppose $U_2 = V_2^c \in \delta_2$ and $V_1 = U_1^c \in \delta_1$. Now, $V_2^c \cup U_1^c = (V_2 \cap U_1)^c = (\phi)^c = Y$, implying that $U_2 \cup V_1 = Y$, Now, $U_2 \cap V_1 = V_2^c \cap U_1^c = (V_2 \cup U_1)^c = Y^c = \phi$. Therefore the sets U_2 and V_1 are disjoint open sets, neighbourhoods of f(y) and g(y) respectively. Therefore the sets $S((\{y\}, U_1)(\{y\}, U_2))_p$ and $S((\{y\}, V_1)(\{y\}, V_2))_p$ in $p - C_{\omega}(Y, Z)$ are disjoint open sets, neighbourhoods of f and g respectively. Hence, $p - C_{\omega}(Y, Z)$ is a $_pT_2$ space.

Theorem 3.5. Let the space (Z, δ_1, δ_2) be pairwise regular, then $p - C_{\omega}(Y, Z)$ is a *p*regular space.

Proof. Let f and g be unique functions in p - C(Y, Z) such that $\forall y \in Y \ f(y) \neq g(y)$ and let $S((U_i, V_i)(U_i, (V_i)))$ $= \{f \in p - C(Y, Z) : f(U_i) \subset V_i \text{ and } f(U_j) \subset V_j\} \text{ for } U_i \in \tau_1, V_i \in \delta_1, U_j \in \tau_2 \text{ and } V_j \in \delta_2 \text{ for } i, j = 1, 2, 3, 4..., n$ be the neighbourhood system for f. Now, U_i and U_j are both compact, therefore $f(U_i)$ and $f(U_j)$ are also compact. Since (Z, δ_1, δ_2) is pairwise regular space, then δ_1 regularity with respect to δ_2 implies that there exist open sets B_i in δ_2 for $j = 1, 2, 3, 4, \dots, n$, such that $f(U_i) \subset B_i$ and $\overline{B_i} \subset V_i$. This implies that $S(U_i, B_i) \subset S(U_i, \overline{B}_i) \subset S(U_i, V_i)$. Suppose that $\overline{S(U_i, B_i)} \subset S(U_i, \overline{B}_i)$, let $g \notin S(U_i, V_i)$, then it follows that $g \notin S(U_i, \overline{B}_i)$, implying further that for some point $y \in Y$, $g(y) \in \overline{B_i}^c$. Thus, $S(\{y\}, \overline{B_i}^c)$ is a neighbourhood system for g which does not intersect $S(U_j, \overline{B}_j)$. Since $\overline{S(U_j, B_j)} \subset S(U_j, \overline{B}_j)$, then $\overline{S(U_j, B_j)} \subset S(U_j, (V_j))$. Therefore $\bigcap_{j=1}^{n} S(\{y\}, \overline{B_j}^c)$ and $\bigcap_{j=1}^{n} S(U_j, \overline{B_j})$ are $\tau_2 - \delta_2$ disjoint open sets neighbourhoods of g and $\bigcap_{i=1}^{n} S(U_j, B_j)$ respectively. Now, δ_2 regularity with respect to δ_1 implies that there exist open sets A_i in δ_1 for i = 1, 2, 3, 4, ..., n, such that $f(U_i) \subset A_i$ and $A_i \subset V_i$. This implies that $S(U_i, A_i) \subset S(U_i, A_i) \subset S(U_i, V_i)$. Suppose that $S(U_i, A_i) \subset S(U_i, \overline{A_i})$, let $g \notin S(U_i, V_i)$, then it follows that $g \notin S(U_i, \overline{A_i})$, implying further that for some point $y \in Y$, $g(y) \in \overline{A_i}^c$. Thus, $S(\{y\}, \overline{A_i}^c)$ is a neighbourhood system for g which does not intersect $S(U_i, \overline{A_i})$. Since $\overline{S(U_i, A_i)} \subset S(U_i, \overline{A_i})$, then $\overline{S(U_i, A_i)} \subset S(U_i, V_i)$. Therefore $\bigcap_{i=1}^n S(\{y\}, \overline{A_i}^c)$ and $\bigcap_{i=1}^n S(U_i, V_i)$ are $\tau_1 - \delta_1$ disjoint open sets, neighbourhoods of g and $\bigcap_{i=1}^{n} S(U_i, A_i)$ respectively. Let $f \in \overline{S(U_i, A_i)}$ and $f \in \overline{S(U_j, B_j)}$ imply that $f \in \overline{S((U_i, A_i), (U_j, B_j))}$, then $\bigcap_{i,j=1}^{n} S((\{y\}, \overline{A_i}^c)(\{y\}, \overline{B_j}^c))$ and $\bigcap_{i,j=1}^{n} S((U_i, V_i)(U_j, V_j))$ are disjoint open sets neighbourhoods of g and $\bigcap_{i,j=1}^{n} S((U_i, A_i), (U_j, B_j))$ respectively in $p - C_{\omega}(Y, Z)$. Therefore $p - C_{\omega}(Y, Z)$ is a pregular space.

4. Comparison of separation axioms defined on the spaces $p - C_{\omega}(Y, Z)$, $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$

The relationship between ${}_{p}T_{\circ}$, ${}_{p}T_{1}$, ${}_{p}T_{2}$ and ${}_{p}$ regular separation axioms defined on the function space $p - C_{\omega}(Y, Z)$, and $b - T_{\circ}$, $b - T_{1}$, $b - T_{2}$ and b-regular separation axioms defined on function spaces $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$, are established in this section. We provide proof for ${}_{p}T_{2}$ and ${}_{p}$ regular separation axioms on $p - C_{\omega}(Y, Z)$ whenever (Z, δ_{1}) and (Z, δ_{2}) are $b - T_{2}$ and b-regular spaces, and also $b - T_{2}$ property on (Z, δ_{1}) and (Z, δ_{2}) whenever $p - C_{\omega}(Y, Z)$ is a ${}_{p}T_{2}$ space. The proofs of the other separation axioms on the function space $p - C_{\omega}(Y, Z)$ can be done in a similar manner as that of ${}_{p}T_{2}$.

Theorem 4.1. The function space $p - C_{\omega}(Y, Z)$ is a ${}_{p}T_{2}$ -space, if and only if the function spaces $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ are $b - T_{2}$ -spaces.

Proof. Let *f* and *g* be unique functions in $p - C_{\omega}(Y, Z)$ such that $\forall y \in Y f(y) \neq g(y)$, and let $1 - C_{\zeta}(Y, Z)$ be a T_2 space such that $S(U_1, V_1)$ and $S(U_2, V_2)$ are disjoint open sets, neighbourhoods of *f* and *g* respectively. Also, let $2 - C_{\zeta}(Y, Z)$ be a T_2 space such that $S(A_1, B_1)$ and $S(A_2, B_2)$ are disjoint open sets, neighbourhoods *f* and *g* respectively. Now, pairwise continuity of *f* and *g* allows us to pick $S((U_1, V_1)(A_1, B_1))_p = \{f \in p - C(Y, Z) : f(y) \in S(Y, Z) \}$

 $f(U_1) \subset V_1$ and $f(A_1) \subset B_1$ and $S((U_2, V_2)(A_2, B_2))_p = \{g \in p - C(Y, Z) : g(U_2) \subset V_2 \text{ and } g(A_2) \subset B_2\}$ as disjoint open sets in $p - C_{\omega}(Y, Z)$, containing f and g respectively. Hence $p - C_{\omega}(Y, Z)$ is a $_pT_2$ space.

Conversely, let $p - C_{\omega}(Y,Z)$ be a ${}_{p}T_{2}$ -space and let f and g be unique functions in $p - C_{\omega}(Y,Z)$ such that $\forall y \in Y f(y) \neq g(y)$, then there exist two disjoint open sets $S((U_{1}, V_{1})(A_{1}, B_{1}))_{p} = \{f \in p - C(Y,Z) : f(U_{1}) \subset V_{1} \text{ and } f(A_{1}) \subset B_{1}\}$ for U_{1} open in τ_{1} , V_{1} open in δ_{1} , A_{1} open in τ_{2} and B_{1} open in δ_{2} , neighborhood of f, and $S((U_{2}, V_{2})(A_{2}, B_{2}))_{p} = \{g \in p - C(Y, Z) : g(U_{2}) \subset V_{2} \text{ and } g(A_{2}) \subset B_{2}\}$ for U_{2} open in τ_{1} , V_{2} open in δ_{1} , A_{2} open in τ_{2} and B_{2} open in δ_{2} , neighborhood of g. But $S((U_{1}, V_{1})(A_{1}, B_{1}))_{p} = \{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1} \text{ and } f(A_{1}) \subset B_{1}\} = \{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1}\}$ and $\{f \in p - C(Y, Z) : f(A_{1}) \subset B_{1}\}\}$. Now $\{f \in p - C(Y, Z) : f(U_{1}) \subset V_{1}\} = \{f \in 1 - C(Y, Z) : f(U_{1}) \subset V_{1}\} = S(U_{1}, V_{1})$, and $\{f \in p - C(Y, Z) : f(A_{1}) \subset B_{1}\}$. Now $\{f \in p - C(Y, Z) : f(A_{1}) \subset B_{1}\} = S(A_{1}, B_{1})$. These two sets are open and are both neighborhood of f in $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ respectively. In a similar manner, $S(U_{2}, V_{2})$ and $S(A_{2}, B_{2})$ are both open set, neighborhood of f and g respectively. Also, $S(A_{1}, B_{1})$ and $S(A_{2}, B_{2})$ in $2 - C_{\zeta}(Y, Z)$ are disjoint open neighborhoods of f and g respectively. Therefore, $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ are $b - T_{2}$ spaces.

Theorem 4.2. The function space $p - C_{\omega}(Y, Z)$ is a *p*regular space, if $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ are *b*-regular spaces.

Proof. let *f* and *g* be unique functions in $p - C_{\omega}(Y, Z)$ such that $\forall y \in Y$ $f(y) \neq g(y)$, and let $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ be *b*-regular. Then for a closed set $\overline{S(U_1, V_1)}$ in $1 - C_{\zeta}(Y, Z)$ such that $f \notin \overline{S(U_1, V_1)}$, there exist disjoint open sets $S(A_1, B_1)$ and $S(C_1, D_1)$ such that $f \in S(A_1, B_1)$ and $\overline{S(U_1, V_1)} \subset S(C_1, D_1)$. Similarly, for a closed set $\overline{S(U_2, V_2)}$ in $2 - C_{\zeta}(Y, Z)$ such that $f \notin \overline{S(U_2, V_2)}$, there exist disjoint open sets $S(A_2, B_2)$ and $S(C_2, D_2)$ such that $f \in S(A_2, B_2)$ and $\overline{S(U_2, V_2)} \subset S(C_2, D_2)$. Since *f* is pairwise continuous, we have that $f \in S((A_1, B_1)(A_2, B_2))$. Now, suppose $g \in \overline{S(U_1, V_1)} \subset S(C_1, D_1)$ and $g \in \overline{S(U_2, V_2)} \subset S(C_2, D_2)$ imply that $g \in \overline{S((U_1, V_1)(U_2, V_2))}$, then $g \in \overline{S((U_1, V_1)(U_2, V_2))} \subset S((C_1, D_1)(C_2, D_2))$. Now $\overline{S((U_1, V_1)(U_2, V_2))}$ is a closed subset of $p - C_{\omega}(Y, Z)$ not containing *f*, and $S((C_1, D_1)(C_2, D_2))$ and $S((A_1, B_1)(A_2, B_2))$ are disjoint open sets containing $\overline{S((U_1, V_1)(U_2, V_2))}$ and *f* respectively. Therefore $p - C_{\omega}(Y, Z)$ is a *p*-regular space.

5. Conclusion

The function space $p - C_{\omega}(Y, Z)$ is a ${}_{p}T_{\circ}, {}_{p}T_{1}, {}_{p}T_{2}$ and ${}_{p}$ regular space, if the topological spaces (Z, δ_{1}) and (Z, δ_{2}) are $b - T_{\circ}, b - T_{1}, b - T_{2}$ and b-regular spaces, and also if the bitopological space $(Z, \delta_{1}, \delta_{2})$ is $p - T_{\circ}, p - T_{1}, p - T_{2}$ and p-regular space. The function space $p - C_{\omega}(Y, Z)$ is also ${}_{p}T_{\circ}, {}_{p}T_{1}, {}_{p}T_{2}$ and ${}_{p}$ regular, if and only if the function spaces $1 - C_{\zeta}(Y, Z)$ and $2 - C_{\zeta}(Y, Z)$ are $b - T_{\circ}, b - T_{1}$ and $b - T_{2}$, and only if the function spaces $1 - C_{\zeta}(Y, Z)$ are b-regular spaces. The set C(Y, Z) can be expressed as a cartesian product $\prod_{y \in Y} Z_{y}$. Since the product of normal spaces need not be normal, it follows that the space $p - C_{\omega}(Y, Z)$ need

not be normal whenever (Z, δ_1) and (Z, δ_2) are both normal spaces, and also whenever (Z, δ_1, δ_2) is pairwise normal. The results so far obtained can be extended to the space $s - C_{\tau}(Y, Z)$ and be used to characterize compactness in the space $s - C_{\tau}(Y, Z)$.

References

- [1] R. F. Arens, A Topology for Spaces of Transformations, The Annals of Mathematics 47 (1946), no. 2, 480-495.
- [2] R. F. Arens and J. Dugundji, Topologies for function space, Pacific J. Math. 1 (1951), 5-31.
- [3] R. H. Fox, On topologies for function spaces, American Mathematical Society 27 (1945), 427-432.
- [4] R. Engelking, *General Topology*, Heldermann Verlag, Berlin-West, 1989.
- [5] J. C. Kelly, Bitopological Spaces, London Math Soc. 13 (1963), 71-89.
- [6] S. Lal, Pairwise concepts in bitopological spaces, J. Austral. Math. Soc. Ser. 26 (1978), 241-250.

- [7] M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform Topological Spaces*, Monograph Noordhoof Ltd., 1966.
- [8] N. E. Muturi, G.P. Pokhariyal and J. M. Khalagai, Continuity of functions on function spaces defined on bitopological spaces, Journal of Advanced Studies in Topology 8 (2017), no. 2, 130-134.
- [9] N. E. Muturi, J. M. Khalagai and G. P. Pokhariyal, *Splitting and admissible topologies defined on the set of continuous functions on bitopological spaces*, International Journal of Mathematical Archive **9** (2018), no. 1, 65-68.
- [10] W. J. Pervin, Connectedness in Bitopological Spaces, Nederl. Akad. Wetensch. Proc. Ser . A70, Indag. Math. 29 (1967), 369-372.
- [11] I. L. Reilly, On bitopological separation properties, Nanta Math. 5 (1972), no. 2, 14-25.
- [12] S. Willard, General Topology, Addison-Wesley Publishing Company, U.S.A, 1970.