

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHE 2215
 COURSE TITLE: BASIC THERMODYNAMICS

DATE: 25 ${ }^{\text {TH }}$ APRIL 2019
TIME:
1100-1300 HRS

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Avogardro's costant $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
3. Gas constant $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4. $1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{Nm}^{-2}$
5. Gravitational acceleration $=10 \mathrm{NKg}^{-1}$

This paper consists of FOUR printed pages. Please turn over.

QUESTION ONE (30 marks) Compulsory

a) Describe the molecules of a perfect gas based on the following parameters;
(i) Motion
(1 mk)
(ii) Intermolecular distance
(1 mk)
(iii) Intermolecular
forces
(1 mk)
b) (i) Define pressure and state its SI units (2 mks)
(ii) Calculate the pressure in Pascal exerted by a mass of 1.5

Kg pressing through the point of a pin whose cross-section $\begin{array}{lllllll}\text { area is } & 3.0 & \mathrm{x} & 10 & -2 & \mathrm{~mm}^{2}\end{array}$ (4 mks)
c) (i)

State
Charles's
law
(1 mk)
(ii) A balloon is inflated to a volume of 2.50 L at room temperature, what will be the new volume if the temperature is lowered to $-25^{\circ} \mathrm{C}$ at constant pressure (4 mks)
d) State the volume occupied by 13.7 g of chlorine- 71 gas at $45^{\circ} \mathrm{C}$ and 745 mmHg pressure (5 mks)
(e) A gaseous mixture contains 320 mg methane $(16.04 \mathrm{~g}), 175$ $\mathrm{mg} \operatorname{argon}(39.95 \mathrm{~g})$ and 225 mg neon $(20.18 \mathrm{~g})$. The partial pressure of neon at 300 K is 8.87 kPa . Calculate the volume and the total pressure of the mixture (4 mks)
(f) Define the following terms as used in thermodynamics;
(i) The
system
(1 mk)
(ii) The
(1 mk)
(iii) The
(1 mk)
(g) 1 mole of CaCO_{3} is heated in an open container to $700^{\circ} \mathrm{C}$ at which temperature it is fully decomposed. How much work has been done in the process?
(2 mks)
(h) The internal energy, U, per mole of monoatomic perfect gas is given by:
$U=U(0)+3 / 2 R T$
Where $U(0)$ is the internal energy at 0 K . Calculate the molar specific heat at constant volume, $C_{\mathrm{v}, \mathrm{m}}$ (2 mks)

QUESTION TWO (20 marks)

a) Define the following terms and state their respective SI units;
(i)
(2 mks)

(ii)	Molar	heat	capacity
$(2 \mathrm{mks})$	Specific	heat	capacity
(iii)			

(2 mks)
b) Calculate the heat energy produced in a resistance wire filament in contact with the water if a current of 1 A from a 50 V source is passed through the filament for 5 minutes (3 mks)
c) What is meant by the standard state of a substance?
(2 mks)
d) The density of phosphorus (30.97 g) vapour at $310^{\circ} \mathrm{C}$ and 775 mmHg is $2.64 \mathrm{~g} / \mathrm{L}$. What is the molecular formula of the phosphorus?
(3 mks)
e) Distinguish between diffusion and effusion of gases (1 mk)
f) Consider an adiabatic reversible expansion of 0.02 mole Ar initially at $25^{\circ} \mathrm{C}$ from $0.50 \mathrm{dm}^{3}$ to $1.00 \mathrm{dm}^{3}$. The molar heat capacity of Ar at constant volume is $12.48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Calculate the work done. (5 mks)

QUESTION THREE (20 marks)

a) Calculate the height of a column of liquid Y (density $=0.879$ gcm^{-3}) in metres required to exert a pressure of 0.970 atm (3 mks)
b) In order for a gas filled balloon to rise in air, the density of the gas in the balloon must be less than that of air.
(i) Consider air to have a molar mass of $28.96 \mathrm{~g} \mathrm{~mol}^{-1}$. Determine the density of air at $25^{\circ} \mathrm{C}$ and 1 atm in gL^{-1} (3 mks)
(ii) Show by calculation that a balloon filled with Carbon dioxide at temperature of $25^{\circ} \mathrm{C}$ and 1 atm pressure could not be expected to rise in air (3 mks)
c) At 300 K temperature and 20 atm pressure, the compression factor of a gas is 0.86 . Calculate;
(i) Volume occupied by 8.2 mmol of the gas under these conditions
(3 mks)
(ii) An approximate value of the second virial constant B at 300 K
(3 mks)
d) Explain the following observations;
(i) The pressure of a fixed mass of a gas is inversely proportional to its volume at constant temperature (2 mks)
(ii) The volume of a fixed mass of a gas is directly proportional to the absolute temperature (2 mks)
e) State the standard conditions of temperature and pressure (1 mk)
QUESTION FOUR (20 marks)
a) Given the following data;

$$
\begin{gathered}
S_{(s)}+\frac{3}{2} O_{2(g)} \xrightarrow{\text { yields }} \mathrm{SO}_{3(g)} \quad \Delta_{\mathrm{c}} H^{\theta}=-395.2 \mathrm{Kjmol}^{-1} \\
2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(g)} \xrightarrow{\text { yields }} 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta_{\mathrm{c}} H^{\theta}=198.2 \mathrm{Kjmol}^{-1}
\end{gathered}
$$

Calculate $\Delta_{r} H^{\theta}$ for the reaction;

$$
\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\text { yields }} \mathrm{SO}_{2(\mathrm{~g})}
$$

mks)
b) When 2 moles of sulphur dioxide gas react completely with 1 mole of oxygen gas to form 2 moles of sulphur trioxide gas at $25^{\circ} \mathrm{C}$ and a constant pressure of $1 \mathrm{~atm}, 198 \mathrm{kj}$ of energy are released as heat. Calculate ΔU and ΔH (4 mks)
c) Naphthalene burns in oxygen according to the equation;

$$
\mathrm{C}_{10} \mathrm{H}_{8(\mathrm{~s})}+12 \mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\text { yields }} 10 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The standard enthalpy for this reaction is $\Delta_{c} H^{\theta}=-5157$ Kjmol^{-1}. When 120 mg of naphthalene was burnt in a bomb calorimeter, the temperature was raised by 3.05 K .

Calculate the heat capacity of the calorimeter, given the molar mass of naphthalene is $128.18 \mathrm{gmol}^{-1}$ (4 mks)
d) Five moles of an ideal gas at 298 K contracts reversibly and isothermally from a pressure of 10 bar to 1 bar. What are the values of $w, \quad q, \Delta U$ and ΔH (4 mks)
e) Water is heated to boiling under pressure of 1.0 atm . When an electric current of 0.5 A from a 12 V supply is passed for 300 s through a resistance in thermal contact with the water,
it is found that 0.798 g of water is vaporized. Calculate the molar internal energy and enthalpy changes of the boiling water
(5 mks)
//END

