

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 1206

COURSE TITLE: BASIC CONCEPTS IN CHEMICAL BONDING AND STRUCTURE

DATE: 15TH APRIL 2019

TIME: 8.30AM -10.30AM

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. All Examination Rules Apply.

SECTION A

Question One (30mks)

a)	 a) In the Lewis theory, Lewis symbols and Lewis structures are used to represent elements and compounds respectively. State what the following represent in a Lewis symbol; 					
	(i) Chemical (1 mk)		ynnoor,			symbol
	(ii) Dots (1 mk)	around	the	cher	nical	symbol
b)	Draw Lewis sym	bols of the follo	wing elem	nents;	(i)	Carbon-6
(1 m	ık)				(1)	Carbon-0
(1 n))				(ii)	Oxygen-8
(1 11	(iii) Nitrogen- (1 mk)	7				
c)	Draw Lewis stru		-	•		
(1 n	nk)	(i) Hydrog	gen Chl	oride ((H=1,Cl=17)
				(ii) Chl	orine gas
(1 n				(C	_	12)
	(iii) Methane (1 mk)				—	12)
d)	(i) How does th		•			
	explain tl (2 mks)	ne geome	etry	of	а	compound
(0)	(ii)	Using VSEPR t	heory, e	kplain the	e geom	etry in BCl₃
(2 mks)						
e) (i) State the two steps often observed when constructing hybrid orbitals (2 mks)						
(ii) In the formation of BF ₃ , there is hybridization before formation of the final covalent bonds. Illustrate the hybridization stating the						
		nd type		/brid	orbitals	•

- f) Distinguish between the two types of covalent bonds, π -bond and σ bond based on the orientation, strength and extent of overlap (3 mks)
- Complete the following table that shows the valence electron pair g) geometry, number of hybrid orbitals involved and the corresponding hybrid orbitals (5 mks)

Valence electron pair geometry	Number of orbitals	Hybrid orbitals
	2	Sp
Trigonal planar		Sp ²
Tetrahedral	4	
Trigonal bipyramidal	5	
	6	Sp ³ d ²

h) (i) When certain elements come into contact, an ionic bond is formed. State the processes that lead to the formation of the bond (2 mks)

(ii) State the natures of the elements in h) (i) above and their respective positions the periodic table on (2 mks)

SECTION B

Answer any TWO questions from this section, each question carries 20 marks

Question Two (20mks)

- Using the Lewis theory, illustrate the formation of the dative covalent a) hydronium bond in ion 1. (H = \mathbf{O} = 8) (2 mks)
- State the nature of covalent bond formed when the difference in b) electronegativity between bonding atoms is;

(i) (1 mk)							Large
(ii) (1 mk)							Small
e) Describe (1 mk)	how	а	polar	covalent	bond	is	formed

f) Calculate the formal charges of the atoms in the compound $[O-N=O]^+$ (2 mks)

g) State the four general rules for formal charges (4 mks)

h) Define the following terms as used in covalent bonding;

(i)	Bond	order
(1 mk) (ii)	Bond	length
(1 mk)	Bond	length
	dissociation energy and state	•
the two (2 mks)	quantities in h)	(i), (ii) above

i) State whether the following molecules are polar or non-polar;

(i) (1 mk) (ii) (1 mk) $\theta = C = 0$ H - 0 - H

(iv)
$$\frac{F}{F} > B - F$$

(1 mk)

j) Describe the orientation of the following types of molecules in an electric field;

(i) (1 mk)	Polar	molecules
(ii) (1 mk)	Non-polar	molecule

Question Three (20mks)

a) State any four properties of metals (4 mks)
b) Explain why polarizability increases with atomic/molecular size (2 mks)
c) (i) Discuss the origin of dipole-dipole interactions in covalent molecules (2 mks)

(ii) Explain why a substance would persist as solid or liquid at higher temperatures than normal based on dipole-dipole interactions (2 mks)

d) (i) Describe the formation of a hydrogen bond (2 mks)

(ii) In terms of hydrogen bonding explain how the density of water varies as ice is heated from 0° C to above 4° C (4 mks)

e) Explain the difference in viscosity between the following alcohols;

- Ethylene glycol, HO-CH₂CH₂-OH –Ethyl alcohol, CH₃CH₂-OH (4 mks)

Question Four (20mks)

- a) The heat of vaporization of acetic acid could be abnormally low due to the existence of hydrogen bonds in the molecule. Explain (2 mks)
- b) Explain the existence of the following metallic properties using the electron sea model;

	(i) Good		electrical	conductivity	
(1 mk)		(ii)	Metallic	lustre	
(1 mk)		()			

c) Define the following terms as used in bonding;

(1	5	(i)	5	Electronegativity
(1 mk)	(ii)		Electron	Affinity

energy

- (1 mk) (iii) Ionization
- (1 mk)
- d) State the relationship between electron affinity, electronegativity and ionization nergy (1 mk)
- e) The sum of formal charges of all the atoms in a Lewis structure equals ------ for neutral molecules and ------for ionic species (2 mks)
- f) The unusual freezing point behavior of water causes ponds to freeze from the top. Explain (3 mks)

g) Draw the resonance structures of CH_3COO^{-1} (1 mk)

h) (i)State one application of bond energies (1 mk)

(ii)A certain covalent bond has a dipole moment of 3.01 D and a bond length of 130.1×10^{-12} m. Calculate the partial charge of the molecule (D = 3.34 x 10 $^{-30}$ C m D⁻¹) (3 mks)

(i) State the difference between a dative covalent bond and a normal covalent bond

(2 mks)

J) Explain the origin of instantaneous dipole-induced dipole molecular interactions

(2 mks)

//END