

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES
BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 418

COURSE TITLE: INDUSTRIAL

CHEMISTRY II

DATE: 24TH APRIL, 2019 TIME: 1100 -

1300HRS

INSTRUCTIONS TO CANDIDATES

1. Answer Question **ONE** and any other **TWO** questions.

2. All Examination Rules Apply.

SECTION A

Question One (30mks)

a)	Define the follow	_	Δ.		
	(i)		Α		reactor
	(1 mk) (ii)	Endothermic			reaction
	(1 mk) (iii)	Exoth	Exothermic		reaction
	(1 mk)				
b)	State three factor	ors to consider	when design	ning a cl	hemical reactor
-	nks)				_
c)	Chemical reacto	rs are classifie	d based on	ı four fac	tors. State the
fact	ors (4 mks)				
d)	Briefly describe the working of the following reactors;				
	(i) Batch				reactor
	(2 mks)				
	(ii)	Two-	Two-phase		
	(2 mks)	·			
	(iii)				CSTR
	(2 mks)				
e)	(i) State the	two most	common	forms	of petroleum
(2 n	nks)				·
•	(ii) State	any th	ree use	es of	petroleum
	(3 mks)	•			·
f)	(i) Explain desal	ting and dehyd	ration meth	od of pet	roleum refining
(2 mks)					
(ii) State the three methods used in the desalting and dehydration					
process					
	ριστεσσ				

(3 mks)

g) Sate the functions of the following components of a petroleum refining column.

(i)The vertical shell

(1 mk)

(ii)Column internals

(1 mk)

SECTION B

Answer any TWO questions from this section, each question carries 20 marks

Question Two (20mks)

a) Define blending as used in petroleum refining.

(1 mk)

 State and briefly explain the two thermal processes carried out in petroleum refining

(4 mks)

- c) (i) Distinguish between catalytic cracking and hydrocracking(1 mk)
 - (ii) Briefly describe catalytic reforming as applied in petroleum processing

(2 mks)

d) With an example define a petrochemical

(2 mks)

- e) Sate any two non-hydrocarbon substances obtained from petroleum (2 mks)
- f) Explain why research and development of new catalysts is important to manufacturers of polymers

(2 mks)

g) Describe the plug flow reactor and state any two areas where it's commonly applied

(3 mks)

h) (i) State the composition of natural gas

(2 mks)

(ii) Distinguish between associated and non-associated natural gas (1 mk)

Question Three (20mks)

- a) (i) Why is it necessary to remove moisture from natural gas (2 mks)
 - (ii) Ethylene glycol, diethylene glycol, and triethylene glycol are typical solvents used to remove water from natural gas. Why is trierhylene glycol preferred

(2 mks)

- (iii) Other than using solvents to remove moisture from natural gas, describe two other methods used to remove water from natural gas (4 mks)
- b) (i) Distinguish between natural rubber and synthetic rubber (1 mk)
 - (ii) State the four main steps involved in production of natural rubber before industrial processing

(4 mks)

- (iii) State one product that dominates the rubber industry (1mk)
- State and describe the three grades of natural rubber recovered before industrial processing (6 mks)

Question Four (20mks)

- a) (i) State the two functions of carbon black in rubber(2 mks)
 - (ii) Describe calendaring used in rubber processing (2 mks)
- b) Explain vulcanization of rubber

(2 mks)

c) (i) Define a fertilizer

(1 mk)

(ii) State the main function of fertilizers (1 mks)

- (iii) State the main roles of nitrogen as an ingredient in fertilizer (2 mks)
- (iv) Apart from nitrogen, state the other primary components of fertilizers
- (2 mks)
- (v) State the raw materials for the respective macronutrients (3 mks)
- (vi) A fertilizer is labeled 5-10-2, explain (2 mks)
- e) State the raw materials for the formation of ammonium nitrate (2 mks)
- f) Describe the granulation process in fertilizer processing (3 mks)//END