REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 420 COURSE TITLE: STATISTICAL DEMOGRAPHY

INSTRUCTIONS TO CANDIDATES

1. Attempt Question ONE and any other TWO questions.
2. Show all your Workings.

QUESTION 1

a). In a stable population, the growth rate is 2% per annum, the death rate is 14.2 per a thousand and the value of

$$
\frac{{ }^{l_{15}}}{l_{0}}=0.7931
$$

i). What is the birth rate?
[2 Marks]
ii). What is the proportion of population aged 15 (that is aged between 15 and 16) years.
[3 Marks]
b). A part of a life table is provided below with some entries missing. On the basis of available information, complete the life table.

Age	l_{x}	d_{x}	q_{x}	L_{x}	T_{x}	e_{x}
10	93102		0.0062			
11			0.0066			
12			0.0072			
13			0.0080			
14			0.0090			
15			0.0100			
16			0.0112			
17			0.0123		5027336	

[5 Marks]
c). What is the Differentiate between
i). Fertility and Fecundity.
[2 Marks]
ii). Complete life table and Abridge life table.
[2 Marks]
iii). Gross Reproductive Rate (GRR) and Net Reproductive Rate (NRR).
[2 Marks]
d). In a certain life table

$$
\begin{aligned}
& \mu_{x}=0.15-0.10 x \text { for } 0 \leq x \leq \frac{1}{2} \text { and } \\
& \mu_{x}=0.10^{x} \text { for } \frac{1}{2} \leq x \leq 1 . \text { Find } l_{1} \text { if } l_{0}=100,000
\end{aligned}
$$

[4 Marks]
e). On the life table with, $l_{x}=\frac{100-x}{190}$.

Determine;
i). The chance that a child who has reached age 5 will live to 60 .
ii). The chance that a man of 30 lives to age 80 .
[1 Mark]
iii). The probability of dying within five years for a man aged 40.
[1 Mark]
iv). The average age of at death for those dying between ages 40and 45 .
[2 Marks]
v). The instantaneous death rate at age 40.
[1 Mark]
vi). The expectation of life at age 40.
[2 Marks]
vii). The chance that three men aged 30 at least one survives to age 80 .
[2 Marks]

QUESTION 2

a). Find l_{x} if $\mu_{x}=\frac{1}{100-x}$.
[4 Marks]
b). A group of lives experience special mortality between the ages 50 and 60 which can be represented by addition to the force of mortality according to the A 1967-70 mortality table ultimate of 0.01 at age 50 decreasing continuously in arithmetic progression to zero at age 60. Calculate the probability that a life aged 50 will live for 10 years.
[6 Marks]
c). The data provided below relates to an observed population

Age Group	Female Population in ‘O00's	Births in 1000's
$15-19$	4459	19
$20-24$	4383	427
$25-29$	3974	674
$30-34$	3540	318
$35-39$	2949	185
$40-44$	2663	22
$45-49$	2418	1

A demographer also ascertains that the population is $91,088,000$ and the sex ratio of births is

$$
\frac{105 \text { Males }}{100 \text { Females }}
$$

Determine,
i). i). CBR.
[6 Marks]
ii). ii). TFR.
iii).iii). GRR.

QUESTION 3

a). (i). A population satisfies the logistic law $\frac{d N}{d t}=r N-\lambda N^{2}$

Where $r>0$ and $\lambda>0$ are constants. At time t_{0} it has N_{0} members. Solve the differential equations by expressing the population as a fraction of time.
[8 Marks]
(ii). List the four fundamental laws of a stable population
[4 Marks]
(iii). Show that in a stationary population $b=\frac{1}{e_{0}}$ where b is the Birthrate and e_{0} is the life expectancy at birth.
[4 Marks]
b). The following is the population characteristic of Lower Narok;

Population 1st January 201710554
Births
456
Deaths 215
Immigration
40
Emigration
145
Population 1st January 2018
Determine
i). The rate of growth during year 2017.
[2 Marks]
ii). The rate of Natural increase during the year 2017.
[2 Marks]

QUESTION 4

a). The population of Mau Settlement Scheme satisfies the logistic law as provided in question 3 above where $\frac{d N}{d t}=r N-\lambda N^{2}$ with parameters $r=0.03$ and $\lambda=3 \times 10^{-8}$ And the time t is measured in years. If the population in 2010 was 200,000
i). What was the population in the year 2030?
[7 Marks]
ii). What is the limiting value of the population
[2 Marks]
b). Two lives now aged x and y respectively are subjected to Gompertz Mortality from the same table where $\mu_{x}=B C^{x}$ and $\mu_{y}=B C^{y}$.
i). What is the probability that a life aged x dies before the life aged ?
[10 Marks]
ii). Generalize the results in (i) for a case of three lives
[1 Mark]

