

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 420 COURSE TITLE: STATISTICAL DEMOGRAPHY

DATE: 4TH DECEMBER 2018

TIME: 08.30 – 10.30 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Attempt Question **ONE** and any other **TWO** questions.
- 2. Show all your Workings.

QUESTION 1

a). In a stable population, the growth rate is 2 % per annum, the death rate is 14.2 per a thousand and the value of

$$\frac{l_{15}}{l_0} = 0.7931$$

i). What is the birth rate?

[2 Marks]

- ii). What is the proportion of population aged 15 (that is aged between 15 and 16) years. [3 Marks]
- b). A part of a life table is provided below with some entries missing. On the basis of available information, complete the life table.

Age	l_x	d_x	q_x	L_x	T_x	e_x
10	93102		0.0062			
11			0.0066			
12			0.0072			
13			0.0080			
14			0.0090			
15			0.0100			
16			0.0112			
17			0.0123		5027336	

[5 Marks]

- c). What is the Differentiate between
 - i). Fertility and Fecundity. [2 Marks]
 - ii). Complete life table and Abridge life table. [2 Marks]
 - iii).Gross Reproductive Rate (GRR) and Net Reproductive Rate (NRR). [2 Marks]
- d). In a certain life table

$$\mu_x = 0.15 - 0.10x \text{ for } 0 \le x \le \frac{1}{2} \text{ and}$$

$$\mu_x = 0.10^x \text{ for } \frac{1}{2} \le x \le 1. \text{Find } l_1 \text{ if } l_0 = 100,000.$$

[4 Marks]

e). On the life table with, $l_{\chi} = \frac{100-x}{190}$. Determine;

i). The chance that a child who has reached age 5 will live to 60.

[1 Mark]

ii). The chance that a man of 30 lives to age 80. [1 Mark]
iii). The probability of dying within five years for a man aged 40. [1 Mark]
iv). The average age of at death for those dying between ages 40and 45. [2 Marks]
v). The instantaneous death rate at age 40. [1 Mark]
vi). The expectation of life at age 40. [2 Marks]
vii). The chance that three men aged 30 at least one survives to age 80. [2 Marks]

QUESTION 2

a). Find
$$l_x$$
 if $\mu_x = \frac{1}{100 - x}$.

 b). A group of lives experience special mortality between the ages 50 and 60 which can be represented by addition to the force of mortality according to the A 1967-70 mortality table ultimate of 0.01 at age 50 decreasing continuously in arithmetic progression to zero at age 60. Calculate the probability that a life aged 50 will live for 10 years.

[6 Marks]

c). The data provided below relates to an observed population

Age Group	Female Population in '000's	Births in 1000's
15-19	4459	19
20-24	4383	427
25-29	3974	674
30-34	3540	318
35-39	2949	185
40-44	2663	22
45-49	2418	1

A demographer also ascertains that the population is 91, 088, 000 and the sex ratio of births is

105 Males
100 Females

Determine,

i). i). CBR.	[6 Marks]
ii). ii). TFR.	[2 Marks]
iii).iii). GRR.	[2 Marks]

[4 Marks]

QUESTION 3

- a). (i). A population satisfies the logistic law $\frac{dN}{dt} = rN \lambda N^2$ Where r > 0 and $\lambda > 0$ are constants. At time t_0 it has N_0 members. Solve the differential equations by expressing the population as a fraction of time. [8 Marks]
 - (ii). List the four fundamental laws of a stable population [4 Marks]
 - (iii). Show that in a stationary population $b = \frac{1}{e_0}$ where b is the Birthrate and e_0 is the life expectancy at birth. [4 Marks]
- b). The following is the population characteristic of Lower Narok;

Population 1st January 2017	10554	
Births	456	
Deaths	215	
Immigration	40	
Emigration	145	
Population 1st January 2018	10690	
Determine		
i). The rate of growth during year 2017.		[2 Marks]

ii). The rate of Natural increase during the year 2017. [2 Marks]

QUESTION 4

- a). The population of Mau Settlement Scheme satisfies the logistic law as provided in question 3 above where $\frac{dN}{dt} = rN \lambda N^2$ with parameters r = 0.03 and $\lambda = 3 \times 10^{-8}$ And the time t is measured in years. If the population in 2010 was 200,000
 - i). What was the population in the year 2030? [7 Marks]
 - ii). What is the limiting value of the population [2 Marks]
- b). Two lives now aged x and y respectively are subjected to Gompertz Mortality from the same table where $\mu_x = BC^x$ and $\mu_y = BC^y$.
 - i). What is the probability that a life aged x dies before the life aged ?

[10 Marks]

ii). Generalize the results in (i) for a case of three lives [1 Mark]