

REGULAR UNIVERSITY EXAMINATIONS
 2018/2019 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER

SCHOOL OF SCIENCE
BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTIONG

COURSE CODE: STA 419
COURSE TITLE: INTRODUCTION TO MEASURE AND PROBABILITY

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Show all your working and be neat
3. Do not write on the question paper

QUESTION ONE (30 MARKS)

a) What do you understand by the following terms
i). Field
ii). $\quad \sigma$-Algebra
iii). Borel σ-Algebra
iv). Measure
v). Probability measure

(2marks)

b) Let $\mathcal{F}_{1} \mathcal{F}_{2} \ldots \ldots . .$. be a sequence of collections of subsets of Ω, such that $\mathcal{F}_{\mathrm{n} \subseteq} \subseteq \mathcal{F}_{\mathrm{n}+1}$ for each n
i). Suppose that each F_{1} is an algebra. Prove that $\bigcup_{\mathrm{i}=1}^{\infty} \mathcal{F}_{\mathrm{i}}$ is also an algebra (3marks)
ii). Suppose that each \mathcal{F}_{1} is algebra. Show (by counter example) that $\bigcup_{\mathrm{i}=1}^{\infty} \mathcal{F}_{\mathrm{i}}$ might not be σ - Algebra
c) Let ($\Omega_{1}, \mathcal{F}_{1}, P_{1}$) be Lebesque measure on $[0 ; 1]$. Consider a second probability triple $\quad\left(\Omega_{2}, \mathcal{F}_{2,} P_{2}\right)$ defined as follows: $\Omega_{2}=(1,2), \mathcal{F}_{2}$ consists of all subsets Ω_{2} and,P_{2} is defined by $, P_{2}\{1\}=\frac{1}{3}, P_{2}\{2\}=\frac{2}{3}$ and additivity. Let (Ω, \mathcal{F}, P) be the product measure of ($\Omega_{1}, \mathcal{F}_{1,} P_{1}$) and ($\Omega_{2}, \mathcal{F}_{2,} P_{2}$).
i). Express each of Ω, \mathcal{F} and P as explicitly as possible
ii). Find a set $\mathrm{A} \subseteq \mathcal{F}$ such that $P(\mathrm{~A})=\frac{3}{4}$
d) What does the following statements mean
i). Converge almost surely
ii). Converge almost everywhere
iii). Converge in Probability
iv). Converge in $r^{\text {th }}$ mean

QUESTION TWO (20 MARKS)

The following theorem describes the relationship among all the convergence modes. Prove each of them
i). If $X_{n} \xrightarrow{\text { a.s }} X$ then $X_{n} \xrightarrow{p} X$
ii). If $X_{n} \xrightarrow{p} X$, then $X_{n k} \xrightarrow{a . s} X$ for some subsequence $X_{n k}$
iii). If $X_{n} \xrightarrow{r} X$, then $X_{n} \xrightarrow{p} X$
iv). If $X_{n} \xrightarrow{p} X$ and $\left|X_{n}\right|^{r}$ is uniformly integrable, then $X_{n} \xrightarrow{r} X$
v). If $X_{n} \xrightarrow{p} X$, and $\lim \sup _{n} E\left|X_{n}\right|^{r} \leq E\left|X_{n}\right|^{p}$, then $X_{n} \xrightarrow{r} X$
vi). If $X_{n} \xrightarrow{p} X$, than $X_{n} \xrightarrow{d} X$
(4marks)

QUESTION THREE (20 MARKS)

a) Let $\left(\mathrm{A}_{\mathrm{n}}\right)_{\mathrm{n}} \in \mathrm{N}$ be a sequence of events from the probability space (Ω, \mathcal{F}, P) (BorelCantelli Lemma). Prove that
i). If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$
ii). If $\left(\mathrm{A}_{\mathrm{n}}\right)_{\mathrm{n}} \in N$ is independent and $\sum_{n \in N}^{\infty} P\left(A_{n}\right)=\infty$, then $P\left(\lim _{n \rightarrow \infty} \sup A_{n}\right)=1$
(6marks)
b) Prove Weak Law of large number, if $X_{1}, X_{2}, \ldots X_{n}$ are IID with mean $\mu($ so, $E[|X|]<\infty$, and,$\mu=E[X])$ then $\bar{X}_{n} \xrightarrow{p} \mu$

QUESTION FOUR 20 MARKS

a) Prove Strong Law of large number, if $X_{1}, X_{2}, \ldots \ldots . . . X_{n}$ are IID with mean then μ $\bar{X}_{n} \xrightarrow{\text { a.s }} \mu$ (10marks)
b) Prove Radon- Nikodym theorem i.e. Let (Ω, \mathcal{F}, P) be σ - finite measure space, and let v be a measurable on (Ω, \mathcal{F}) with $v \ll \mu$. Then there exists a measurable function $X \geq 0$ such that $v(A)=\int_{A} X d \mu$ for all $\mathrm{A} \in \mathcal{F}$. X is unique in the sense that if another measurable function Y also satisfies the equation, then $X=Y$
(10marks)

