

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR *FOURTH* YEAR *FIRST* SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTIONG

COURSE CODE: STA 419

COURSE TITLE: INTRODUCTION TO MEASURE AND PROBABILITY

DATE: DEC 2018

TIME:

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Show all your working and be neat
- 3. Do not write on the question paper

This paper consists of **FOUR** printed pages. Please turn over.

QUESTION ONE (30 MARKS)

- a) What do you understand by the following terms Field (2marks) i). σ – Algebra ii). (2marks) Borel σ – Algebra iii). (2marks) iv). (2marks) Measure v). Probability measure (2marks)
- b) Let $\mathcal{F}_1 \mathcal{F}_2$be a sequence of collections of subsets of Ω , such that $\mathcal{F}_{n \subseteq} \mathcal{F}_{n+1}$ for each n

i). Suppose that each F_1 is an algebra. Prove that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is also an algebra

(3marks)

ii). Suppose that each \mathcal{F}_1 is algebra. Show (by counter example) that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ might not be σ – Algebra (3marks)

- c) Let (Ω₁, F₁, P₁) be Lebesque measure on [0; 1]. Consider a second probability triple (Ω₂, F₂, P₂) defined as follows: Ω₂=(1,2), F₂ consists of all subsets Ω₂ and ,P₂ is defined by ,P₂{1}= 1/3 ,,P₂{2}= 2/3 and additivity. Let (Ω, F, P) be the product measure of (Ω₁, F₁, P₁) and (Ω₂, F₂, P₂).
 i). Express each of Ω, F and P as explicitly as possible (3marks) ii). Find a set A_⊆F such that P(A)= 3/4 (3marks)
- d) What does the following statements mean
 - i).Converge almost surely(2 marks)ii).Converge almost everywhere(2 marks)
 - iii). Converge in Probability (2 marks)
 - iv). Converge in rth mean (2 marks)

QUESTION TWO (20 MARKS)

The following theorem describes the relationship among all the convergence modes. Prove each of them

i). If
$$X_n \xrightarrow{a.s} X$$
 then $X_n \xrightarrow{p} X$ (2marks)

ii). If
$$X_n \xrightarrow{p} X$$
, then $X_{nk} \xrightarrow{a.s} X$ for some subsequence X_{nk} (3marks)

iii). If
$$X_n \xrightarrow{r} X$$
, then $X_n \xrightarrow{p} X$ (2marks)

iv). If
$$X_n \xrightarrow{p} X$$
 and $|X_n|^r$ is uniformly integrable, then $X_n \xrightarrow{r} X$ (5marks)

v). If
$$X_n \xrightarrow{p} X$$
, and $\lim \sup_n E |X_n|^r \le E |X_n|^p$, then $X_n \xrightarrow{r} X$ (4marks)

vi). If
$$X_n \xrightarrow{p} X$$
, than $X_n \xrightarrow{d} X$ (4marks)

QUESTION THREE (20 MARKS)

a) Let $(A_n)_n \in \mathbb{N}$ be a sequence of events from the probability space (Ω, \mathcal{F}, P) (Borel-Cantelli Lemma). Prove that

i). If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then $P(\limsup_{n \to \infty} \sup A_n) = 0$ (4marks)
ii). If $(A_n)_n \in N$ is independent and $\sum_{n \in N}^{\infty} P(A_n) = \infty$, then $P(\limsup_{n \to \infty} \sup A_n) = 1$ (6marks)

b) Prove Weak Law of large number, if X_1, X_2, \dots, X_n are IID with mean

$$\mu(so, E[X]] < \infty, and, \mu = E[X]) \text{ then } \bar{X}_n \xrightarrow{p} \mu$$
(10 marks)

QUESTION FOUR 20 MARKS

- a) Prove Strong Law of large number, if X_1, X_2, \dots, X_n are IID with mean then μ $\bar{X}_n \xrightarrow{a.s} \mu$ (10marks)
- b) Prove Radon- Nikodym theorem i.e. Let (Ω, \mathcal{F}, P) be σ finite measure space, and let v be a measurable on (Ω, \mathcal{F}) with $v \ll \mu$. Then there exists a measurable function $X \ge 0$ such that $v(A) = \int_A X d\mu$ for all $A \in \mathcal{F}$. X is unique in the sense that if another measurable function Y also satisfies the equation, then X = Y

(10marks)

****** END ******