

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2018/2019 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER
SCHOOL OF SCIENCE
BACHELOR OF SCIENCE
COURSE CODE: MAT 2214

COURSE TITLE: NUMERICAL ANALYSIS I

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and ANY Other TWO questions from Section B DO NOT MAKE ANY WRITING ON THIS QUESTION PAPER

This paper consists of THREE printed pages. Please turn over.

SECTION A (30 MARKS)

Question one (30 Marks)

a. Use the intermediate value theorem to show that
$x^{5}-2 x^{3}+3 x^{2}-1=0$ has a solution in the interval [0,1] (3 Marks)
b. Determine
i. The second and
(4 Marks)
ii. The third Taylor polynomial for the function $f(x)=\cos x$ about $x_{0}=0$ and use these polynomial to approximate $\cos (0.01)$
(4 Marks)
iii. Use the third Taylor polynomial and its remainder term to approximate $\int_{0}^{0.1} \cos x d x$
(6 Marks)
c. To determine the number of iterations necessary to solve $f(x)=x^{3}+4 x^{2}-10=0$ with accuracy $\varepsilon=10^{-3}$ using $a_{1}=1$ and $b_{1}=2$ requires finding an integer N that satisfies; $\left|p_{N}-p\right| \leq 2^{-N}(b-a)=2^{-N}<10^{-3}$ Hence or otherwise determine the number of iterations required to obtain an approximation accurate to within 10^{-3}
(5 Marks)
d. Use the bisection method to find solution accurate to within 10^{-2} for

$$
x^{3}-7 x^{2}+14 x-6=0 \text { on }[0,1]
$$

(8 Marks)

SECTION B (40 MARKS)

Question two (20 Marks)

a. Using the Newton - Raphson method, approximate a solution to the equation $\cos x-x=0$ on $\left[0, \frac{\pi}{2}\right]$
b. Using the modified Newton - Raphson method, find the solutions accurate to within 10^{-7} to the problem $f(x)=e^{x}-x-1$ for $0 \leq x \leq 1$ [HINT: $\mathrm{p}_{0}=1$]
(10 Marks)

Question three (20 Marks)

a. Compute up through third differences of the discrete function displayed by the y_{k} column in the table below

k	y_{k}	Δy_{k}	$\Delta^{2} y_{k}$	$\Delta^{3} y_{k}$
0	1			
1	8			
2	27			
3	64			
4	125			
5	216			
6	343			
7	512			

(5 Marks)
b. Using finite difference table show that:

$$
\begin{equation*}
\text { i. } \Delta^{3} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0} \tag{5Marks}
\end{equation*}
$$

(5 Marks)
ii. $\Delta^{4} y_{0}=y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}$
c. Calculate differences through the fifth order in the table below

k	0	1	2	3	4	5	6	7
x_{k}	0	0	0	1	1	0	0	0

(5 Marks)

Question four (20 Marks)

a. Given the function f at the following values:

x	1.8	2.0	2.2	2.4	2.6
$f(x)$	3.12014	4.42569	6.04241	8.03014	10.46675

approximate $\int_{1.8}^{2.6} f(x) d x$ using:
i. Trapezoidal Rule
(5 Marks)
ii. Simpson's Rule
(5 Marks)
b. Using the nodes, $x_{0}=2, x_{1}=2.5$ and $x_{2}=4$. Find the second Lagrange interpolating polynomial for $f(x)=\frac{1}{x}$

