UNIVERSITY EXAMINATIONS, 2018 FOURTH YEAR EXAMINATION FOR
THE DEGREE OF BACHELOR OF MATHEMATICS MAT 427- ORDINARY DIFFERENTIAL EQUATIONS II

Instructions to candidates:
Answer Question 1 and TWO other Questions.
All Symbols have their usual meaning.
Remember to use correct English at all times.

DATE: December 2018 TIME:2hrs

Question 1(Entire course: 30 Marks)
(a) Let $A \in L\left(R^{n}\right)$. Show that the unique solution of the initial value problem

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=K \in R^{n} \tag{1}
\end{equation*}
$$

is $e^{t A} K$.
(4 Marks)
(b) Find the solution $x\left(t, x_{0}\right)$ of the initial value problem

$$
\dot{x}=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & -2 & 0 \\
0 & 0 & 3
\end{array}\right) x, \quad x(0)=\left(K_{1}, K_{2}, 0\right)
$$

where K_{1} and K_{2} are nonzero constants .
(3 Marks)
What is the value of

$$
\begin{equation*}
\lim _{t \rightarrow \infty}|x(t, x(0))| ? \tag{1Mark}
\end{equation*}
$$

(c) Let the 2×2 matrix A have real, distinct eigenvalues λ, μ. Suppose that an eigenvector of λ is $(1,0)^{T}$ and an eigenvector of μ is $(-1,1)^{T}$. Sketch the phase portraits of $\dot{x}=A x$ for the following cases and state the nature of stability :
(i) $0<\lambda<\mu$,
(ii) $0<\mu<\lambda$,
(iii) $\lambda<\mu<0$,
(2 Marks)
(iv) $\lambda<0<\mu$,
(v) $\lambda=0, \mu>0$
(d) Consider the equation

$$
\begin{equation*}
\dot{x}=(x-2)(x+1) . \tag{2}
\end{equation*}
$$

Sketch on the same diagram the possible solution curves for Equation (2) for the following initial conditions

- $-\infty<x(0)<-1$
- $x(0)=-1$
- $-1<x(0)<2$
- $x(0)=2$
- $2<x(0)<\infty$
(e) Consider a simple harmonic oscillator

$$
\begin{equation*}
m \ddot{x}+k x=0, \tag{3}
\end{equation*}
$$

where m is the mass at the end of an elastic spring, and x is the extension from its rest position.
Reduce the system into a first order system.
(1 Marks)
Sketch its possible phase plane.
(2 Marks)
The diagram below shows the relative position of a mass at the end of an elastic spring. The line marked $x=0$ is the rest position.

Figure 2 Oscillating mass attached to a spring.
The arrows indicate the direction of motion.

- Indicate the relative position of diagrams (a),(b), (c),(d) above in a phase plane to the system (3)
(4 Marks)

Question 2 (Linear System: 20 Marks) Consider the nonhomogeneous initial value problem

$$
\begin{equation*}
x \dot{x}(t)=A x(t)+b(t), \quad x(0)=x_{0} \tag{4}
\end{equation*}
$$

where $A \in \mathbf{R}^{n \times n}, \quad b(t) \in \mathbf{R}^{n}$ are continuous functions, and other symbols have their usual meaning.
(a) What do you understand by $X(t) \in \mathbf{R}^{n \times n}$ is a fundamental solution of the differential equation (4) with $b(t)=0$.
(b) Derive the variation-of-constants formula for Equation (4) above. Marks)
(c) By using the method in (b) above, solve the system of equations below

$$
\begin{align*}
\dot{x_{1}} & =x_{1}+x_{2}+t, \\
\dot{x_{2}} & =-x_{2}+1, \tag{5}
\end{align*}
$$

subject to $x_{1}(0)=1, x_{2}(0)=0$.
(11 Marks)
Question 3 (General Properties of Differential Equations: 20 Marks)
(a) Consider the initial value problem

$$
\begin{equation*}
\dot{x}(t)=f(x(t)), \quad x(0)=x_{0} \tag{6}
\end{equation*}
$$

where $f \in \mathcal{C}(D, \mathbf{R}) \quad D \subset I \times \mathbf{R}$. Prove that $x(t)$ is a solution of this initial value problem for $t \in I$ if and only if $x(t)$ is a continuous function that satisfies the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{0}^{t} f(x(s)) d s, \quad \text { for all } t \in I \tag{7}
\end{equation*}
$$

(10 Marks)
(b) Let $\mathcal{B}(\mathbf{R})$ be a set of all bounded functions on \mathbf{R}. Show that for $\mu>0, b \in$ $\mathcal{B} \cap \mathcal{C}(\mathbf{R})$

$$
x(t):=\int_{-\infty}^{t} \exp (-\mu(t-s)) b(s) d s
$$

is the only solution of

$$
x^{\prime}(t)=-\mu x+b(t), \quad \text { in } \mathcal{B}(\mathbf{R}),
$$

(10 Marks)
Question 4 (Modeling and Stability through Linearization: 20 Marks)
(a) Consider the differential equation $\dot{x}=A x$, where $A \in R^{2 \times 2}$ constant matrix. By using the determinant and trace of A, determine under what conditions will one expect to get a stable or unstable
(i) Nodes,
(2 Marks)
(ii) Saddles,
(2 Marks)
(iii) Centers,
(iv) Foci at the origin.
(b) Suppose two species X and Y are to be introduced onto an island. It is known that the two species compete, but the precise nature of their interactions is unknown. We assume that the populations $x(t)$ and $y(t)$ of X and Y, respectively, at time t are modeled by a system

$$
\begin{align*}
\dot{x} & =f(x, y), \tag{8}\\
\dot{y} & =g(x, y) . \tag{9}
\end{align*}
$$

In the questions below, justify your answers.
(i) Suppose $f(0,0)=g(0,0)=0$; that is, $(x, y)=(0,0)$ is an equilibrium point. What does this say about the ability of X and Y to migrate to the island?
(2 Marks)
(ii) Suppose that a small population of just X or just Y will rapidly reproduce. What does this imply about $f_{x}(0,0)$ and $g_{y}(0,0)$? Marks)
(iii) Since X and Y compete for resources, the presence of either of the species will decrease the rate of growth of the population of the other. What does this say about $f_{y}(0,0)$ and $g_{x}(0,0)$?
(2 Marks)
(iv) Using the assumption from parts (i) through (iii), what type(s) of equilibrium point (sink, source, center, and so on) could $(0,0)$ possibly be?[Hint: there may be more than one possibility; if so list them all.] (2 Marks)

Suppose that species X reproduces very quickly if it is on the island without any Y 's present, and that species Y reproduces slowly if there are no X 's present. Also suppose that the growth rate of species X is decreased a relatively large amount by the presence of Y, but that species Y is indifferent to X 's population.
(v) What can you say about $f_{x}(0,0)$ and $g_{y}(0,0)$?
(2 Marks)
(vi) What can you say about $f_{y}(0,0)$ and $g_{x}(0,0)$?
(vii) What are the possible type(s)(sink, source, center, and so on) for the equilibrium point at $(0,0)$ [Hint: there may be more than one possibility; if so list them all.]
(1 Mark)

