UNIVERSITY EXAMINATIONS, 2018
FOURTH YEAR EXAMINATION FOR
THE DEGREE OF BACHELOR OF MATHEMATICS
MAT:418- PARTIAL DIFFERENTIAL EQUATIONS I
Instructions to candidates:
Answer Question 1 and any other TWO.
All Symbols have their usual meaning

DATE: 2018 TIME: 2hrs

Question 1(Entire course: 30 Marks)
(a) A thin bar located on the x axis has its ends at $x=0$ and $x=L$. The initial temperature of the bar is $f(x), 0<x<L$, and its ends $x=0, x=L$ are maintained at constant temperatures u_{1}, u_{2} respectively.
(i) Assuming the surrounding medium is at temperature u_{0} and that Newton's law of cooling applies, show that the partial differential equation for the temperature of the bar at any point at any time is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\beta\left(u-u_{0}\right), \quad 0<x<L, \quad t>0 \tag{1}
\end{equation*}
$$

(4 Marks)
(ii) Determine the steady state temperature of Equation (1)

(b) (Wave Equation)

(i) Solve the initial value problem:

$$
\begin{aligned}
u_{t t}-\Delta u & =x t \quad, \text { in } \mathbb{R}, t>0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =0
\end{aligned}
$$

(4 Marks)
(ii) Show the general solution of the $\operatorname{PDE} u_{x y}=0$ is

$$
u(x, y)=F(x)+G(y)
$$

for arbitrary functions F, G.
(3 Marks)
(iii) Using the change of variables $\xi=x+t, \quad \eta=x-t$, show $u_{t t}-u_{x x}=0$ if and only if $u_{\xi \eta}=0$.
(4 Marks)
(c) Consider the Partial differential equation

$$
\begin{aligned}
u_{x_{1}}+u_{x_{2}} & =u^{2} \quad \text { in } U \subseteq \mathbb{R}^{2}, \\
u & =g \text { on } \Gamma, \text { the boundary of } U .
\end{aligned}
$$

where $U=\left\{x_{2}>0\right\}$ and $\Gamma=\left\{x_{2}=0\right\}=\partial U$.
(i) Sketch the region U and indicate its boundary Γ.
(ii) Find the Characteristic equations for (2)
(ii) Find the initial Condition in parametric form
(iv) Use the Characteristic equations and the initial conditions in (c)(ii) to find the solution

$$
u=\frac{g\left(x_{1}-x_{2}\right)}{1-x_{2} g\left(x_{1}-x_{2}\right)} .
$$

(3 Marks)
Question 2: Heat Equation, eigenfunction expansion (20 Marks)
Consider the nonhomogeneous heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}+f(x, t), \quad 0<x<L, \quad t>0 \tag{2}
\end{equation*}
$$

where $u:=u(x, t), \alpha$ is a real constant, $f(x, t)$ a given function and L is a given constant. Suppose Equation(2) is to be solved subject to:

$$
\begin{equation*}
B C s \text { (i) } u(0, t)=0, \text { (ii) } u(L, t)=0, \quad t>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { IC } u(x, 0)=\varphi(x), \quad 0 \leq x \leq L \tag{4}
\end{equation*}
$$

where $\varphi(x)$ is a given function.
To solve (2) we seek a nontrivial separable series solution of the form

$$
\begin{equation*}
u(t, x):=\sum_{n=1}^{\infty} T_{n}(t) X_{n}(x) \tag{5}
\end{equation*}
$$

where $X_{n}(x)$ is a function of x alone that we find by solving the homogeneous equation associated with Equation(2) subject to boundary conditions (3), while $T_{n}(t)$ is a function of t alone found by solving a sequence of ODEs.
(a) Determine the eigenfunction $X_{n}(x)$.
(b) Suppose we expand $f(x, t)$ thus:

$$
\begin{equation*}
f(x, t)=\sum_{n=1}^{\infty} f_{n}(t) X_{n}(x) \tag{6}
\end{equation*}
$$

Determine an expression for $f_{n}(t)$.
(3 Marks)
(c) Using Equation (5) and Equation(6) in Equation(2), show that the function $T_{n}(t)$ satisfies the first order ODE given by

$$
\begin{equation*}
\dot{T}_{n}(t)+(\alpha n \pi / L)^{2} T_{n}(t)=f_{n}(t) \tag{7}
\end{equation*}
$$

where the dot denotes differention with respect to time t.
(c) Determine the initial condition, $T_{n}(0)$, to be imposed on Equation(7) and hence solve it.
(6 Marks)
Question 3 (Nonlinear First Order-Method of Characteristics: 20 Marks) Consider the Partial differential equation

$$
\begin{aligned}
u_{x_{1}} u_{x_{2}} & =u \text { in } U \subseteq \mathbb{R}^{2}, \\
u & =x_{1}^{2} \text { on } \Gamma, \text { the boundary of } U
\end{aligned}
$$

where $U=\left\{x_{2}>0\right\}$ and $\Gamma=\left\{x_{2}=0\right\}=\partial U$.
(a) Sketch the region U and indicate its boundary Γ.
(3 Marks)
(b) Find the Characteristic equations for (8)
(c) Find the initial Condition in parametric form
(d) Use the Characteristic equations and the initial conditions in (c) to find the solution

$$
u=\frac{\left(4 x_{1}+x_{2}\right)^{2}}{16}
$$

(7 Marks)
Question 4 : Transport Equation (20 Marks)
(a) The the one dimensional transport equation in all of \mathbb{R} is given by

$$
\begin{equation*}
u_{t}+b u_{x}=0 \text { for } x \in \mathbb{R}, t>0, \tag{8}
\end{equation*}
$$

where b is a constant. Show that $z(s):=u(x+s b, t+s), \quad s \in \mathbb{R}$ is a solution to Equation(8) and give its geometrical interpretation.
(5 Marks)
(b) Suppose that Equation (8) is subject to the initial condition

$$
\begin{equation*}
u(x, 0)=g(x) \quad x \in \mathbb{R} \tag{9}
\end{equation*}
$$

Show that the solution to the transport equation (8) subject to (9) is

$$
u(x, t)=g(x-t b)
$$

(5 Marks)
(c) Consider

$$
\begin{aligned}
u_{t}+b u_{x} & =f \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0) & =g(x), \quad x \in \mathbb{R} .
\end{aligned}
$$

Derive the solution

$$
\begin{equation*}
u(x, t)=g(x-t b)+\int_{0}^{t} f(x+(s-t) b, s) d s \tag{10}
\end{equation*}
$$

of Equation(10).

