

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR YEAR ONE SEMESTER ONE

SCHOOL OF

BACHELOR OF SCIENCE

COURSE CODE: CHE 1104 COURSE TITLE: PHYSICAL CHEMISTRY

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.
3. You should ensure that you have the following materials for this examination;

Answer booklet

Scientific calculator

4. $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{Mol}^{-1}$
5. $\mathrm{N}=6.023 \times 10^{23} \mathrm{Mol}^{-1}$
6. $1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}$
7. $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{NM}^{-2}$
8. Answer Question One from Section I and ANY other TWO from Section II

SECTION I

Question One

a) Briefly state three postulates of the Kinetic Theory of Gases. (3marks)
b) Based on the above postulates, and given that $\mathrm{PV}=1 / 3 \mathrm{nMu}^{2}$ derive the following;
i) Boyle's law (2 marks)
ii) Charles' law (2 marks)
iii) Avogadro's law (2 marks)
c) A mixture of helium and neon gases has a total pressure of 1.2 atm . if the mixture contains twice as many moles of helium as neon, determine the partial pressure due to neon. (3 marks)
d) The Maxwell-Boltzmann distribution applies not just to gases, but also to the molecular motions within liquids. The fact that not all molecules have the same speed helps us understand the process of evaporation.
i. Explain in terms of molecular motion why a drop of water becomes cooler as molecules evaporate from the drop's surface. (2 marks)
ii. Use the Maxwell-Boltzmann distribution to explain why even a slight increase in temperature can greatly increase the rate at which a drop of water evaporates.
(2 marks)
e) State Raoult's law and using a pair of liquids A and B, derive the equation that relates the total vapour pressure with the individual partial pressure of the volatile liquid A and B. (3 marks)
f) Define mean free path and state why the mean free path of a gas is inversely proportional to its density. (2 marks)
g) Define relative lowering of vapour pressure. Establish the relationship between the relative lowering of vapour pressure of a solution containing a non-volatile solute and the mole fraction of the solute. (2 marks)
h) The boiling point of a pure solvent is increased by the addition of a non-volatile solute, and the elevation can be measured by ebullioscopy. It is found that

$$
\Delta T_{\mathrm{b}}=T_{\mathrm{b}}(\text { solution })-T_{\mathrm{b}}(\text { solvent })=i \cdot K_{b} \cdot m
$$

Define $\mathrm{I}, \mathrm{K}_{\mathrm{b}}$ and m and state their significance. (3 marks)
i) Balance the following equations;
I. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \quad \mathrm{CaSO}_{4}+\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ (2 marks)
II. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4} \quad \rightarrow \quad \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{4}+\mathrm{NH}_{4} \mathrm{NO}_{3} \quad$ (2 marks)

SECTION II

Question Two

a) Two liquids A and B were assumed to form an ideal solution. The vapour pressure of A was determined to be 44.5 mm Hg and that of B to be 88.7 mm Hg at 298 K . Given that the molar masses of A and B are 46 and $32 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively;
i) Determine the mole fraction of A and B in the solution obtained by mixing 0.1 kg of each. (4 marks)
ii) Calculate the partial pressures and the total vapour pressure of the solution. (4 marks)
b) Explain why
i. The solubility of solids in water increases as the temperature increases. (2 marks)
ii. Sea water has a lower freezing point than fresh water (2 marks)
c) Define elevation in boiling points. With the help of a graph diagram explain how the addition of a non-volatile solute elevates the boiling point of a solvent. (8 marks)

Question Three

a) Determine the temperature at which oxygen molecules will have the same r.m.s. velocity as carbon dioxide molecules at $50^{\circ} \mathrm{C}$. (5 marks)
b) Suppose that you compress an ideal gas to half its original volume, while also halving its absolute temperature; during this process, explain what happens to the pressure of the gas. (3 marks)
c) Caproic acid, the substance responsible for the aroma of dirty gym socks and running shoes, contain C, H, and O only. On combustion, 0.450 g of sample of caproic acid gives $0.418 \mathrm{~g} \mathrm{of}_{2} \mathrm{O}$ and $1.023 \mathrm{~g} \mathrm{CO}_{2}$. The molecular weight of caproic acid is $116.2 \mathrm{~g} / \mathrm{mol}$. Determine;
i. The empirical formula of caproic acid (8 marks)
ii. The molecular formula of caproic acid (4 marks)

Question Four

a) If 12.0 gms of $\mathrm{N}_{2}, 0.40 \mathrm{gms}$ of H_{2} and 9.0 gms of O_{2} are put into a 1.0 litre container at $27^{0} \mathrm{C}$, determine the;
i) Number of moles of N_{2}
(2 marks)
ii) Number of moles of $\mathrm{H}_{2} \quad$ (2 marks)
iii) Number of moles of $\mathrm{O}_{2} \quad$ (2 marks)
iv) Calculate the total pressure in the container (3 marks)
b) A vessel holds a mixture of helium (He) and methane $\left(\mathrm{CH}_{4}\right)$. Calculate the ratio of the rms speed of the He atoms to that of the CH_{4} molecules given that $\mathrm{V} \mathrm{rms}=\sqrt{ } 3 R T / M$. (7 marks)
c) Under the same conditions of temperature and pressure, which of the following gases would behave most ideally and why?
i. Ne
ii N_{2}
iii CH_{4}
(4 marks)

Question Five

a) Account for the following observations in terms of kinetic molecular theory;
i) The volume of a gas can be readily reduced by increasing the applied pressure. (3 marks)
ii) The pressure exerted by a gas increases as its temperature is raised. (3 marks)
b) When 4.0 moles of oxygen are confined in a 24 -liter vessel at $176^{\circ} \mathrm{C}$, the pressure is 6.0 atm. If the oxygen is allowed to expand isothermally until it occupies 36 liters, determine the new pressure attained. (6 marks)
c) Calculate the rate of diffusion for hydrogen molecules compared to those of oxygen at the same temperature. (8 marks)

