MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BSC. AGRICULTURAL ECONOMICS AND RESOURCE MANAGEMENT

COURSE CODE: ECO 2204 COURSE TITLE: MATHEMATICS FOR ECONOMISTS II

DATE: 11 ${ }^{\text {TH }}$ DECEMBER, 2018 TIME: 1100-1300 HRS
\section*{INSTRUCTIONS TO CANDIDATES}
Answer Question ONE and any other THREE questions

QUESTION ONE

a) Find the derivatives of y with respect to x :
i. $y=\frac{\left(6 x^{5}\right)\left(x^{2}-4\right)-(2 x)\left(x^{6}\right)}{\left(x^{2}-4\right)^{2}}$
ii. $\mathrm{y}=3 u^{\frac{1}{2}}+u^{3} \quad \mathrm{u}=x^{2}+2 x^{2}$
b) Given the following Marginal Propensity to Consume (MPC) function, derive the corresponding Consumption function:

$$
\begin{align*}
& \text { MPC }=0.7+0.1 Y^{-1 / 4} \\
& \text { And } \quad C=80 \text { when } Y=0 \tag{3mks}
\end{align*}
$$

c) Compute the elasticity of Q with respect to P and state whether the function is elastic, inelastic or unit elastic

$$
\begin{equation*}
\mathrm{Q}=\frac{2}{p^{2}} \tag{3mks}
\end{equation*}
$$

d) Discuss the limitations of Static Equilibrium Analysis
e) Compute the following integral:

$$
\begin{equation*}
\int\left(x^{2 / 3}-\frac{7}{x}+5 e^{3 x}\right) d x \tag{3mks}
\end{equation*}
$$

f) A national income model is represented by the following functions:

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G} \\
& \mathrm{C}=\mathrm{a}+\mathrm{bY}^{\mathrm{d}} \\
& \mathrm{~T}=\mathrm{tY} \\
& \mathrm{G}=\mathrm{G}^{0} \\
& \mathrm{I}=\mathrm{I}^{0}
\end{aligned}
$$

Derive the following multipliers:
i. Government Expenditure Multiplier
ii. Income Tax Rate Multiplier
g) Find the partial derivative of Z with respect to x and y

$$
\begin{equation*}
\mathrm{Z}=\left(3 x^{4}+3 y^{5}-y^{3}\right)^{6} \tag{2mks}
\end{equation*}
$$

QUESTION TWO

a) Given Demand and Supply functions in a one-commodity market model as:

$$
\begin{aligned}
& Q_{d}=a-b P \\
& Q_{s}=-c+d P
\end{aligned}
$$

i. Derive the equilibrium price and quantity
ii. Using comparative static partial derivatives, compute:
a. Effect of a shift of the demand function on equilibrium quantity ($\frac{\partial Q}{\partial a}$). Use a diagram to show an increase in the parameter a
b. Effect of change in the slope of the supply function on equilibrium price $\left(\frac{\partial P}{\partial d}\right)$. Use diagram to show increase in the parameter d
(8 marks)
b) Magothe has a coffee firm in Kiambu county having the following functions:
$\mathrm{Q}=0.8 \mathrm{P}-20$
TFC $=180$
$\mathrm{AVC}=4+2 \mathrm{Q}$
Find Magothe's profit maximizing level of output and his profit

QUESTION THREE

a) Wijenje has the following maize production function

$$
\mathrm{Q}=40 \mathrm{~K}^{0.4} \mathrm{~L}^{0.6}
$$

Where Q is the quantity of maize produced while K and L are units of inputs capital and labour respectively. Supposing that the prices of K and L are Ksh 20 and Ksh. 40 respectively, and that he has a total of Ksh. 5000 to spend on the two inputs:
i. Using Lagrangean optimization technique determine the values of λ, K and L at profit maximization level
ii. What will be Wijenje's maximum profit
iii. Using bordered Hessian matrix, confirm that the critical values present a maximum
(15 marks)

QUESTION FOUR

a) Noellene is a price discriminating monopolist having the following functions for her milk production firm:

$$
\begin{aligned}
& \mathrm{P}_{1}=32-2 \mathrm{Q}_{1} \\
& \mathrm{P}_{2}=22-\mathrm{Q}_{2} \\
& \mathrm{TC}=10+2 \mathrm{Q}+\mathrm{Q}^{2}
\end{aligned}
$$

Determine the prices and quantities for the milk in the two different markets
b) The following demand and supply functions were extracted from a perfectly competitive market

$$
\begin{array}{ll}
P=80-\frac{1}{2} Q & \text { demand function } \\
P=20+\frac{1}{10} Q & \text { supply function }
\end{array}
$$

Determine Producer Surplus and Consumer Surplus at equilibrium
(6 marks)

QUESTION FIVE

a) What is the usefulness of the Lagrangean multiplier in mathematical optimization
b) Faith has a mango firm in Kitui in which she has an objective of:

$$
\text { Maximizing profit }=60 x-2 x^{2}-x y-3 y^{2}+80 y
$$

Subject to $\mathrm{x}+\mathrm{y}=12$ as the constraint
i. Compute the values of x, y and λ at profit maximization point
(10 marks)
ii. What will be Faith's profit
(2 marks)

END

