

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER

SCHOOL OF BUSINESS & ECONOMICS BACHELOR OF ARTS IN ECONOMICS

COURSE CODE: ECO 410

COURSE TITLE: ADVANCED MICROECONOMICS

DATE: 5TH DECEMBER, 2018 TIME: 8.30 – 10.30 A.M

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **THREE** questions

This paper consists of 2 printed pages. Please turn over.

QUESTION ONE

(a)Differentiate between the following terms

oligopoly market model

(i)	Weak monotonicity and strong monotonicity of the production function	2 marks
(ii)	Weak essentiality and strong essentiality of inputs in production	2 marks
(iii)	First and second Hoteling's Lemma	2 marks
(iv)	Stackelberg's oligopoly market model and Cournot	2 marks

(b) A Constant Elasticity of Substitution (CES) production function is given as:

$$Q = A \left(\frac{5}{7}L^{-\rho} + \frac{2}{7}K^{-\rho}\right)^{-\frac{1}{\rho}}$$

- (i) Find the Marginal Rate of Substitution of labor and capital 5 marks $(MRTS_{L,K})$
- (ii) Find the elasticity of substitution, δ 4 marks

(c) The following is a cost function for a given firm:

$$C(w_1, w_2) = 18w_1^{\frac{1}{3}}w_2^{\frac{2}{3}}y$$

Where y is the output and w_2 and w_2 are the prices of two inputs X_1 and X_2 respectively and y is output.

- (i) Demonstrate that the cost function is concave and non- 2 marks increasing in input prices
- (ii) Recover the associated output function using the 6 marks Shepherd's lemma

QUESTION TWO

(a)Suppose every firm in a perfect competitive market has the following cost function

 $C(y) = y^3 - 10y^2 + 42y$

Where y = output of the firm

- (i) How much output will each firm produce and at what 3 marks price?
- (ii) Suppose the market demand function is given as Y = 1 mark 2,750 75*P*, what would be the total market demand?
- (iii) Given the information obtained in (i) and (ii) above, what 1 mark is the optimal number of firms in this market?
- (iv) Suppose a quantity tax of Kshs. 3 is introduced on every 1 marks amount consumed, what is the new market demand and new optimal number of firms? [Assume the burden of the tax is fully reflected in the price]
- (v) How many firms exit the market due to the price rise?
 1 mark
 (b) Diaguag any 4 properties of a well behaved profit
 9 market
- (b) Discuss any 4 properties of a well-behaved profit 8 marks function

QUESTION THREE

An oligopoly market comprises two firms facing the demand curve specified as P = 100 - 2Y, where Y is the total industry output($Y = Y_1 + Y_2$). The respective cost functions for the two firms are gives as $C_1 = 40$ and $C_2 = 0.5Y_2$ respectively.

- (a)Assuming that the firms are engaged in a sequential game (Stackelberg Model) and that Firm 1 is the quantity leader and Firm2 is the quantity follower:
 - (i) Find the reaction curve for Firm 2
 (ii) Find the equilibrium price (P) and quantities (Y₁, Y₂, Y)
 6 marks
- (b) Now assume that the firms are engaged in a 6 marks simultaneous game (Cournot Model), how would the values in part (a) (ii) differ?

QUESTION FOUR

(a)A production functions is given as $Y = 5K^{0.2}L^{0.6}$

Where K and L are the units of capital and labor respectively

(i)	Characterize the relationship between the two inputs as shown in the production function	1 mark
(ii)	Is the production function concave?	3 marks
(iii)	Find the values of K and L (expresses as a function of output) for which the total cost of the firm is minimized, given that the respective prices of capital and labor is given as $r = 3$ and $w = 1$.	9 marks
(iv)	What are the values of K and L if output Y=1650	2marks

QUESTION FIVE

A one-input production function for a firm is given as $Y = x^{\frac{1}{2}}$. Taking output price and input price as p and w respectively:

(i)	Derive the firm's profit function	7 marks
(ii)	Show that the profit function is convex	2 marks
(iii)	Derive the firm's supply function	2 marks
(iv)	Derive the unconditional factor demand function	2 marks
(v)	If you are given that the output price is \$0.05 and input price \$0.03, what is the unconditional factor demand for input X?	2 marks

//END