MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 310 COURSE TITLE: MATHEMATICAL PHYSICS

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Question one carries 30 marks while each of the others carries 20 marks.
3. Credit will be awarded for clear explanations and illustrations.

Standard Laplace transforms

$f(t)$

$$
L\{f(\mathrm{t})\}
$$

$$
\begin{gathered}
1 \\
e^{a t} \\
t^{n}
\end{gathered}
$$

$$
\begin{gathered}
1 / s \\
1 / s-a \\
n!/ s^{n+1}
\end{gathered}
$$

QUESTION ONE

a) Distinguish between a scalar field and a vector field (2mks)
b) The vector field F is defined by $\boldsymbol{F}=2 x z \boldsymbol{i}+2 y z \boldsymbol{j}+\left(x^{2}+2 y^{2} z\right) \boldsymbol{k}$.

Calculate $\nabla \times \mathbf{F}$ and deduce that F can be written $\mathbf{F}=\nabla \varphi$. Determine the form of φ (5mks)
c) Verify by direct calculation that $\nabla \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\nabla \times \mathbf{a})-\mathbf{a} \cdot(\nabla \times \mathbf{b})$ (4mks)
d) Determine the Laplace transform of $t^{2} e^{t}$ (3mks)
e) A radioactive isotope decays in such a way that the number of atoms present at a given time, $N(t)$, obeys the equation: $\frac{d N}{d t}=-\lambda N$. If there are initially N_{o} atoms present, find $N(t)$ at later times. (5mks)
f) The acceleration of a particle at any time $t \geq 0$ is given $\boldsymbol{a}=\frac{d v}{d t}=$ $12 \cos 2 t \boldsymbol{i}-8 \sin 2 t \boldsymbol{j}+16 t \boldsymbol{k}$. If the velocity \mathbf{v} and displacement \mathbf{r} are zero at $t=0$, find v and r at any time (6 mks)
$g)$ The voltage from a square wave generator is of the form $v(t)=\left\{\begin{array}{l}0,-4<t<0 \\ 10,0<t<4\end{array}\right.$ and has a period of 8 ms . Find the Fourier series for this periodic function
a) Verify Green's theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is a closed curve of the region bounded by $y=x$ and $y=x^{2} \quad$ (5marks)
b) The current flowing in an electrical circuit is given by the differential equation $R i+L \frac{d i}{d t}=E$ where E, L and R are constants. Use Laplace transforms to solve the equation for current i given that when $t=0, i=0 \quad$ (8 mks)
c) Find the total work done in moving a particle in a force field given by $\boldsymbol{F}=$ $3 x y \boldsymbol{i}-5 z \boldsymbol{j}+10 x \boldsymbol{k}$ along the curve $x=t^{2}+1, y=2 t^{3}, z=t^{3}$ from $\mathrm{t}=1$ to $\mathrm{t}=2$ (4mks)
d) Determine the constant a so that the vector $\mathbf{v}=(x+3 y) \mathbf{i}+(y-2 z) \mathbf{j}+$ $(x+a z) \mathrm{k}$ is solenoidal (3marks)

QUESTION THREE

a) If E and φ are the electric field strength and the electric potential respectively then $E=-\operatorname{grad} \varphi$ and $\operatorname{div} E=\frac{\rho}{\varepsilon}$. Find the Poisson's equation (4marks)
b) Determine the solution of the Laplace's equation in Cartesian coordinate (6mks)
c) A metal bar, insulated a long its sides is 1 m long . it is initially room temperature of $15^{\circ} \mathrm{C}$ and at time $\mathrm{t}=0$, the ends are placed into ice at $0^{\circ} \mathrm{C}$. Find an expression for the temperature at a point P at distance $\times m$ from one end at any time t seconds after $t=0$

QUESTION FOUR

a) Solve the differential equation $2 \frac{d^{2} y}{d x^{2}}-11 \frac{d y}{d x}+12 y=3 x-2$ (6 marks)
b) Show that the force $\mathrm{F}=\left(2 x y+z^{3}\right) \mathbf{i}+x^{2} \mathbf{j}+3 x z^{2} \mathbf{k}$ is a conservative force field
c) Find the corresponding scalar potential function force in this field (5mks)
d) Find the work done in moving an object in this field from $p_{1}(1,-2,1)$ to $p_{2}(3,1,4)$ (4 mks)

END//

