MAASAI MARA UNIVERSITY

UNIVERSITY EXAMINATIONS 2012/2013 SECOND YEAR SECOND SEMESTER EXAMINATION

SCHOOL OF SCIENCE

DIPLOMA IN EDUCATION PRIMARY OPTION

COURSE CODE: PCHE 0212

COURSE TITLE: BASIC ORGANIC CHEMISTRY

INSTRUCTIONS

Answer question ONE and any other TWO questions

QUESTION ONE (30 Marks)

1. (a) Define the following terms
(i) Torsional energy
(ii) Enatiomers
(iii) Diastereomers
(3 Marks)
(b) (i) State three properties of enantiomers
($1^{1 / 2} 2$ Marks)
(ii) The concentration of Cholesterol in Chloroform is $6.15 \mathrm{~g} / 100 \mathrm{ml}$.A part of the solution in a 5 cm tube caused an observed rotation of -1.2°. Calculate the specific rotation.
(2 Marks)
(iii Draw the structure of Cholesterol and identify the stereocenters. Calculate the expected stereoisomers.
(c) (i) Using an illustration explain how atomic orbital's of hydrogen form molecular orbitals.
(3 Marks)
(ii) Explain why SN^{2} reaction are not prone to rearrangement
(1 Mark)
(iii) Show the mechanism for the reaction below and indicate the SN^{1}

($3^{1 / 2}$ Marks)
(d) (i) Write the formula for calculating formal charge
(ii) Calculate the formal charge for $\mathrm{NH}_{4}{ }^{+}$
(2 Marks)
(iii Draw the resonance structures for $\mathrm{CO}_{3}{ }^{2-}$
($1^{1 / 2}$ Marks)
(e) (i) Explain the following observation: CCl_{4} has a dipole moment of zero (1 Mark)
(ii) Draw the structures of the anti-eclipse and gauche conformation and all the minimum and maximum conformation at C_{3} and C_{4} of hexane. (2 Marks)
(iii) Using the R / S system write the formula 2-Butanol
(2 Marks)
(f) (i) Give the product and the name of the following reaction;

(1 Mark)
(ii) Using illustrations explain why alcohol boils at a higher temperature
(2 Marks)

QUESTION TWO (20 Marks)

2. (a) (i) Define a nucleophile.
(ii) Show the mechanism for the reactions below.

(a)

(3 Marks)
(b) (i) Explain the difference in the physical and chemical properties observed between Ethyl alcohol and dimethyl ether as shown in the table below.
(2 Marks)

Molecular Formula	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
B. $\mathrm{P}^{\circ} \mathrm{C}$	78.5	-24.5
M. $\mathrm{P}^{\circ} \mathrm{C}$	-117	-138
Reaction with a metal	Hydrogen is displaced	No reaction

(ii) State two fundamental factors in the structural theory
(2 Marks)
(iii) Explain why even numbered alkenes have higher B.P than the odd numbered alkanes.
(c) (i) Define SN^{1} and SN^{2} reactions
(ii) State three physical properties of carboxylic acids
(iii) Identify enantiomers, diasteromers in the compounds below

CH_{3}	CLH_{3}	CH_{3}	CH_{3}	
$\mathrm{H}-\mathrm{C}^{-}-\mathrm{Br}$	$\mathrm{Br}-\mathrm{C}^{\text {C- }}$ - H	$\mathrm{H}-\mathrm{C}-\mathrm{Br}$	$\mathrm{Br}-\overline{\mathrm{C}}-\mathrm{H}$	
$\mathrm{H}-\mathrm{C}-\mathrm{Br}$	$\mathrm{Br}-\mathrm{C}-\mathrm{H}$	$\mathrm{Br}-\mathrm{C}-\mathrm{H}$	$\mathrm{H}-\mathrm{C}-\mathrm{Br}$	
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	${ }_{\overline{\text { Cu}}}^{2} \mathrm{H}$	$\overline{\mathrm{C}}_{2} \mathrm{H}_{5}$	
1	11	III	IV	(2 Marks)

(iv) State the four steps for writing the nomenclature using the R/S system
(4 Marks)

QUESTION THREE (20 Marks)

3. (a) (i) State the Zaitsev's rule.
(ii) Compare and contrast substitution versus elimination reactions on $1^{\circ}, 2^{\circ}$ and 3° substrates.
(b) (i) Explain why branching of alkanes reduces the boiling points
(ii) Give the reason for the differences in the Bp and $\mathrm{M} . \mathrm{p}$ of trans and cis alkenes.
(2 Marks)
(iii) Complete the reaction below and give the two products formed.

(c) (i) The stability of a carbocation depends on the groups attached to the central positively charged Carbon and the order of their reaction is $3^{\circ}>2^{\circ}>1^{\circ}>$ Methyl. Give the reason for this trend
(ii) Complete this reaction and give the two products formed

(3 Marks)
(iii) Complete the reaction below and give the products formed

QUESTION FOUR (20 Marks)

4. (a) State the modern times Markovnikov's rule
(b) (i) The following data was reported for a compound newly isolated from a plant source: $[\alpha]^{20^{\circ}}{ }_{\mathrm{D}}=+33.5^{\circ}$. Explain what each represents
(2 Marks)
(ii) A solution of $2 \mathrm{~g}(+)$-glyceraldehyde in 10 ml water was placed in a 100 mm cell using the Sodium D-line; an observed rotation of +1.74 was reported. Determine the specific rotation
(c) (i) State the three parts that constitute the IR region
(ii) Draw the IR spectrum for acetic acid.
(iii) State the three rules for writing Lewis structure
(vi) The dipole moment of a gas phase HBr molecule is 0.827 D .Determine the charge distribution in the diatomic if the bond distance is 141.5 pm
($2^{1 ⁄ 2}$ Marks)
(d) (i) Briefly describe the absorption of light in the IR region of the spectrum
(2 Marks)
(ii) State two factors used to recognize the presence of a chiral molecule
(1 Mark)
(iii) Define a resonance structure
(1 Mark)

End

