

MAASAI MARA UNIVERSITY

UNIVERSITY EXAMINATIONS 2012/2013 SECOND YEAR SECOND SEMESTER EXAMINATION

SCHOOL OF SCIENCE DIPLOMA IN EDUCATION PRIMARY OPTION

COURSE CODE: PCHE 0212

COURSE TITLE: BASIC ORGANIC CHEMISTRY

DATE: April 2013 3 HOURS

INSTRUCTIONS

Answer question \underline{ONE} and any other \underline{TWO} questions

QUESTION ONE (30 Marks)

- 1. (a) Define the following terms
 - (i) Torsional energy
 - (ii) Enatiomers
 - (iii) Diastereomers

(3 Marks)

(b) (i) State three properties of enantiomers

(1 ½ Marks)

- (ii) The concentration of Cholesterol in Chloroform is 6.15g/100ml. A part of the solution in a 5cm tube caused an observed rotation of -1.2 °. Calculate the specific rotation. (2 Marks)
- (iii Draw the structure of Cholesterol and identify the stereocenters. Calculate the expected stereoisomers. (2 Marks)
- (c) Using an illustration explain how atomic orbital's of hydrogen form molecular orbitals. (3 Marks)
 - (ii) Explain why SN² reaction are not prone to rearrangement (1 Mark)
 - (iii) Show the mechanism for the reaction below and indicate the SN¹

(3 ½ Marks)

- (d) (i) Write the formula for calculating formal charge (½ Mark)
 - (ii) Calculate the formal charge for NH₄⁺ (2 Marks)
 - (iii Draw the resonance structures for CO_3^2 (1 ½ Marks)
- (e) (i) Explain the following observation: CCl₄ has a dipole moment of zero (1 Mark)
 - (ii) Draw the structures of the anti-eclipse and gauche conformation and all the minimum and maximum conformation at C₃ and C₄ of hexane. (2 Marks)
 - (iii) Using the R/S system write the formula 2-Butanol (2 Marks)
- (f) (i) Give the product and the name of the following reaction;

$$\begin{array}{cccc}
H & H^{+} \\
3CH_{3}C=0
\end{array}$$
(1 Mark)

(ii) Using illustrations explain why alcohol boils at a higher temperature

(2 Marks)

QUESTION TWO (20 Marks)

2. (a) (i) Define a nucleophile.

(1 Mark)

(ii) Show the mechanism for the reactions below.

(a)
$$(CH_3)_3C-CI + OH^- \xrightarrow{acetone} (CH_3)_3C-OH$$

$$CH_3CH=CH_2 \xrightarrow{HBr} CH_3CH_2CH_2Br$$
(b)
$$R-O-O-R \xrightarrow{(CH_3)_3C-OH} (3 Marks)$$

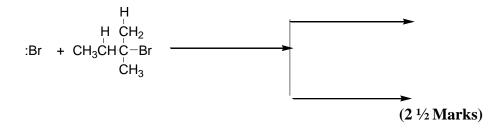
(b) (i) Explain the difference in the physical and chemical properties observed between Ethyl alcohol and dimethyl ether as shown in the table below. (2 Marks)

Molecular Formula	C_2H_6O	C ₂ H ₆ O
B.P °C	78.5	-24.5
M.P °C	-117	-138
Reaction with a metal	Hydrogen is displaced	No reaction

- (ii) State two fundamental factors in the structural theory (2 Marks)
- (iii) Explain why even numbered alkenes have higher B.P than the odd numbered alkanes. (1 Mark)
- (c) (i) Define SN^1 and SN^2 reactions (2 Marks)
 - (ii) State three physical properties of carboxylic acids (3 Marks)
 - (iii) Identify enantiomers, diasteromers in the compounds below

(iv) State the four steps for writing the nomenclature using the R/S system (4 Marks)

QUESTION THREE (20 Marks)


- 3. (a) (i) State the Zaitsev's rule. (2 Mark)
 - (ii) Compare and contrast substitution versus elimination reactions on 1 °, 2 ° and 3 °substrates. (3 Marks)
 - (b) (i) Explain why branching of alkanes reduces the boiling points (2 Marks)
 - (ii) Give the reason for the differences in the Bp and M.p of *trans* and *cis* alkenes. (2 Marks)
 - (iii) Complete the reaction below and give the two products formed.

$$\begin{array}{ccc}
C_3H_7 & H_2O/H_2O \\
H_3CICC-Br & & \\
C_2H_5 & & \\
\end{array}$$
Acetone
$$(3 \frac{1}{2} Marks)$$

- (c) (i) The stability of a carbocation depends on the groups attached to the central positively charged Carbon and the order of their reaction is 3°>2°>1°.>Methyl. Give the reason for this trend (2 Marks)
 - (ii) Complete this reaction and give the two products formed C_2H_5ONa (CH₃)₃C-Br C_2H_5OH 25 0C

(3 Marks)

(iii) Complete the reaction below and give the products formed

QUESTION FOUR (20 Marks)

4	. (a)	State	the modern times Markovnikov's rule	(1 Mark)	
	(b)	(i)	The following data was reported for a compound newly isolated from a plant source: $[\alpha]^{20}$ D= +33.5 °. Explain what each represents (2 Mark		
		(ii)	A solution of 2g (+)-glyceraldehyde in 10ml water was placed in cell using the Sodium D-line; an observed rotation of $+1.74$ was a Determine the specific rotation	um D-line; an observed rotation of $+1.74$ was reported.	
	(c)	(i)	State the three parts that constitute the IR region	(1 ½ Marks)	
		(ii)	Draw the IR spectrum for acetic acid.	(3 ½ Marks)	
		(iii)	State the three rules for writing Lewis structure	(3 Marks)	
		(vi)	The dipole moment of a gas phase HBr molecule is 0.827 charge distribution in the diatomic if the bond distance is	e moment of a gas phase HBr molecule is 0.827D.Determine the stribution in the diatomic if the bond distance is 141.5pm (2 ½ Marks)	
	(d)	(i)	Briefly describe the absorption of light in the IR region of the s	be the absorption of light in the IR region of the spectrum (2 Marks)	
		(ii)	State two factors used to recognize the presence of a chira		
		(iii)	Define a resonance structure	(1 Mark)	

End