

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF TOURISM AND NATURAL RESOURCE MANAGEMENT BACHELOR OF SCIENCE IN FORESTRY

COURSE CODE: FOR 310
COURSE TITLE: FOREST INVENTORY

DATE: 26TH APRIL, 2018 TIME: 11:00AM-13:00PM

INSTRUCTIONS TO CANDIDATES

Answer **ALL** questions in section **A. Answer question 6** and any other **TWO** in section **B.**

This paper consists of 4 printed pages. Please turn over

Section A: Answer ALL questions (25 Marks)

Question 1

Explain five reasons for conducting a forest inventory (5 Marks)

Question 2

Explain why an inventory involving complete enumeration of 5000 ha of forest is likely to be much less acceptable to a forest manager than one based on a 5% sample of the same forest. (5 Marks)

Question 3

- i) Outline the importance of management plan inventories (3 Marks)
- ii) Discuss the objectives of PSPs establishment for management of a forest estate (2 Marks)

Question 4

Explain how you would determine the following stand variables from a sample of 15 trees taken from a plot area of 0.05ha. Show your working clearly. (5 Marks)

- a) Stocking, N
- b) Basal area, G
- c) Heights for three trees with dbh and no height measurements from this data
- d) Mean top diameter (MTD)
- e) Mean top height (MTH)

Question 5

Discuss the advantages of aerial photography over ground-based observations (5 marks)

Section B: Answer question SIX and any other TWO questions (45 Marks)

Question 6 (Compulsory)

- i) Discuss the significance of the following terms as used during inventory sampling (9 Marks)
 - a) Accuracy
 - b) Bias
 - c) Precision
 - d) Error
 - e) Parameter
 - f) Population
 - g) Variable
 - h) Variate
 - i) Statistic
- ii) A timber cruise was conducted on 852 ha forest. From aerial photographs, the forest was divided into: *Pinus patula* 460ha, *Eucalyptus saligna* 225 ha, *Eucalyptus camandulensis* 113ha, and Indigenous forest- 54ha. Ten 0.5 ha plots were then selected at random and in each, total standing volumes on the plots was computed as in the Table below:

	Pinus patula	Eucalyptus	Eucalyptus	Indigenous
		saligna	camandulensis	forest
1	166.5	512.5	51.5	13.0
2	52.5	80.0	36.0	0.0
3	7.5	435.0	92.0	16.0
4	231.0	385.0	7.5	27.0
5	413.5	387.5	36.0	0.0
6	150.0	212.5	62.0	34.5
7	212.5	436.0	83.0	11.0
8	83.5	462.0	17.0	8.5
9	161.0	325.0	44.0	4.0
10	190.0	317.5	53.0	27.5

- a) Compute the average volume in m³/ha for each of the different forest types (3 Marks)
- b) Estimate the average volume of the forest in m³/ha (3 Marks)

Question 7

- i) Outline the standard procedure for conducting a stratified random sampling (10 Marks)
- ii) State the advantages and disadvantages of cluster sampling (5 Marks)

Question 8

- i) Briefly describe the basic procedure to be followed when planning for a forest inventory (8 Marks)
- ii) Outline the basic considerations when planning for inventory crews (7 Marks)

Question 9

- i) Discuss the application of remote sensing in the management of forestry (7 Marks)
- ii) State and explain the basic elements of aerial photo interpretation (8 Marks)