

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE

COURSE CODE: COM 2206 COURSE TITLE: AUTOMATA THEORY

DATE: 2ND MAY 2018

TIME: 11:00AM - 13:00PM

INSTRUCTIONS TO CANDIDATES

i.Answer question ONE (compulsory) and any other TWO questions. ii.Question one carries 30 marks iii.All other questions carry 20marks iv.Mobile Phone is not allowed in the exam room

SECTION A (COMPULSORY - 30 MARKS)

QUESTION ONE

- a) Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\Sigma = \{0, 1\}$. The language $\{w \in \Sigma * \mid w \text{ ends with } 00\}$ with three states. (5 Marks)
- b) Exain Pattern Matching and Regular Expressions. (10marks)
- c) Consider the following non-deterministic finite automaton (NFA) over the alphabet $\Sigma = \{0, 1\}$.

Give a one-sentence description of the language recognized by the NFA. Write a regular expression for this language. **(10 Marks)**

d) Explain Universal Turing Machine. (5 marks)

SECTION B: ANSWER TWO QUESTION 40 MARKS

QUESTION TWO

a)	Simplify (\varnothing b + ε a)+ + \varnothing *	(5 Marks)
b)	Explain Chomsky Normal Form.	(5 marks)
c)	State and Prove Parikh's theorem.	(5 marks)
d)	Show by giving an example that, if <i>M</i> is an NFA that recognizes	
	language C, swapping the accept and non-accept state	es in <i>M</i> doesn't
	necessarily yield a new NFA that recognizes <i>C</i>	(5 Marks)

QUESTION THREE

- a) Explain Regular Expressions and Finite Automata. (10 marks)
- b) Write regular expressions for the following languages over the alphabet $\Sigma = \{a, b\}$: (5 Marks)
- c) Draw DFAs for each of the languages from question 1. None of your DFAs may contain more than 4 states. (5 Marks)

QUESTION FOUR

a) Differentiate NFA and DFA with respect to transition and acceptance.

(10 marks)

b) Draw DFA which accepts even number of a's over the alphabet {a, b}. (5 marks)

c) Explain Myhill-Nerode Theorem.

(5 marks)

END//