

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: CHE 318 COURSE TITLE: COORDINATION AND ORGANOMETALLIC CHEMISTRY

DATE: 20TH AUGUST 2018

TIME: 2:30 PM – 4:30 PM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other TWO.

This paper consists of 5 printed pages. Please turn over:

SECTION A

QUESTION ONE

1)

- a) Provide the names for the coordination compounds. (6 marks)
 - i. [Cr(en)₂(H₂O)₂]NO₃
 - ii. [Au(CO₃)₂]²⁻
 - iii. [Co(CO)₃(OH)(H₂O)₂]⁺

 b) Provide the chemical formulas for the coordination compounds. (6 marks)

- i. tetraammineplatinum(II) difluoromotetrachloroplatinate(IV)
- ii. diamminediaquadithiocyanatochromium(III) bromide
- iii. tris(ethylenediamine)iron(III) hexacyanocobaltate(III)
- 2) Define each of the following.

(3 marks)

- i. Ionization isomerism (and give an example)
- ii. Crystal field splitting
- iii. Hard acid (and give an example)
- 3) The complex ion [Cu(NH₃)₆]²⁺ is blue in aqueous solution. The absorbance spectrum of this complex ion has a maximum absorbance at 615 nm. Calculate the crystal field splitting energy (in kJ/mol) for this ion. (4 marks)

- 4) Answer the question for each pair of molecules or species and briefly explain why this is the case.
 - Which of the following complexes would demonstrate the greatest magnetism? [Ru(CN)₃(H₂O)₃]⁻ or [Ru(Cl)₃(H₂O)₃]⁻ (3 marks)
 - ii. Which of the following will form the most stable adduct with Au⁺? (2 marks)

F· Cl· Br· I·

- iii. Which of the following is expected to have the largest Δ_0 ? Co²⁺ or Co³⁺. Explain your reasoning (2 marks)
- 5) Briefly explain the advantages of polymerization with Ziegler-Natta catalysts over free-radical polymerization. (2 marks)
- 6) Explain why tetrahedral complexes of Co²⁺ are generally more stable than those of Ni²⁺.
 (2 marks)

QUESTION TWO

- 1) Write the formula or structure as stated and indicate the overall charge. (12 marks)
 - a) The structure for: *cis*-dichlorobis(ethylenediamine)chromium(III)
 - b) The two structures for the isomers of: triaquatrichlorochromate(III) and label them
 - c) The formula of: μ -amido- μ -hydroxobis(tetracarbonyliron)(4+)
 - d) The formula of coordination isomer of:

hexaaquairon(III) hexacyanocobaltate(III)

- 2) Determine the ligand field stabilization energy for the following octahedral complexes and identify the complex ion that is more stable? (4 marks)
 - i. $[Cu(H_2O)_6]^{2+}$
 - ii. [Co(CN)₆]³⁻
- 3) Briefly explain why:
 - i. CuI is much less soluble in water than CuF, and LiF is much less soluble than LiI. (2 marks)
 - ii. $H_2N(CH_2)_2NH_2$ forms a more stable complex with Zn^{2+} than $H_2N(CH_2)_5NH_2$ (2 marks)

QUESTION THREE

- Draw the octahedral crystal field splitting diagram for metal ions in the following complex ions and in each case, indicate whether it is diamagnetic or paramagnetic: (8 marks)
 - iv. [Co(CN)₆]³⁻
 - v. [FeBr₆]⁴⁻
- 2) The complex [Fe(LG)₆]²⁺ is known to be diamagnetic. Given that LG is a neutral monodentate ligand, is LG ligand inducing a strong field or weak field? Show your reasoning. (3 marks)
- 3) Identify the most likely transition metal **M**: (9 marks)
 - i. K₃[**M**(CN)₆], in which **M** is a first-row transition metal and the complex has three unpaired electrons
 - ii. $[\mathbf{M}(H_2O)_6]^{3+}$, in which **M** is a second-row transition metal and LFSE = -2.4 Δ_o
 - iii. tetrahedral [MCl₄]⁻, which has five unpaired electrons and firstrow transition metal **M**

QUESTION FOUR

1) Predict the number of unpaired electrons for each of the following:

(8 marks)

- i. a tetrahedral d^6 ion
- ii. $[Co(H_2O)_6]^{2+}$ in octahedral field
- iii. $[Cr(H_2O)_6]^{3+}$ in octahedral field
- iv. a square-planar d^7 ion
- 2) Identify the first-row transition metal for the following 18-electron species: (6 marks)
 - i. [**M**(CO)₃(PPh₃)]⁻
 - ii. H**M**(CO)₅
 - iii. $[(\eta^5-C_5H_5)\mathbf{M}(CO)_3]_2$ (assume single **M-M** bond)
- 4) For each of the following complexes, determine the hybrid orbital type and the number of unpaired electrons. (6 marks)

(a) [Cr(H₂O)₆]²⁺

(b) [Co(CN)₆]³⁻

The Periodic Table of Elements

			Periods					
		7	6	UI UI	4	ŝ	Ν	-
		87 Fr	55 Cs	37 Rb	K	11 Na	3 Li	H1
Actinides	Lanthanides	88 Ra	56 Ba	38 Sr	20 Ca	12 Mg	4 Be	2A 2
		89 Ac	57 La	39 Y	21 Sc	3B 3		
		104 Rf	72 Hf	40 Zr	22 Ti	4B 4		Metals
90 Th	58 Ce	105 Db	73 Ta	41 Nb	V ²³	5B		tals [
91 Pa	59 Pr	106 Sg	74 W	42 Mo	24 Cr	6B		L
U ⁹²	60 Nd	107 Bh	75 Re	43 Tc	25 Mn	7B 7		Metalloids
93 Np	61 Pm	108 Hs	76 Os	44 Ru	26 Fe	°~¬		ids [
94 Pu	62 Sm	109 Mt	77 Ir	45 Rh	Co 27	9 9		Z
95 Am	63 Eu	110 Ds	78 Pt	46 Pd	28 N:	5		Nonmetals
96 Cm	64 Gd	Rg	79 Au	47 Ag	29 Cu	1B		tals
97 Bk	65 Tb	112	80 Hg	48 Cd	30 Zn	2B 12		
98 Cf	66 Dy	113	18 18				B 0	3A 13
99 Es	67 Ho		82 Pb	50 Sn	32 Ge		-	
100 Fm	68 Er	115		51 Sb			-	
101 Md	69 Tm	5 116				-		6A 16
102 No	70 Yb				-			7A
103 Lr	71 Lu							8A 18 He