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In the previous chapter, we were concerned with improving processes. In this chapter,
our concern is not with the improvement of the internal workings of processes but
with describing and predicting the output of processes.The process outputs on which

we focus are the streams of data generated by processes over time. Recall from Chapters
2 and 12 that such data streams are called time series or time series data. For example,
businesses generate time series data such as weekly sales, quarterly earnings, and yearly

In the pharmaceutical
industry, sales forecasting

is critical to the success
of the company. Ac-

curate forecasts aid
sales managers in
improving deci-
sion making, the fi-
nance department
in controlling and
scheduling its op-
erating costs and
capital budget, the

human resources department in projecting staffing,
and the purchasing department in controlling inven-
tories and production schedules. Due to the critical
life-and-death nature of the industry, pharmaceutical
manufacturers rely on sophisticated analytical tech-
niques to build the forecasts.

Several years ago, a major pharmaceutical
company based in New Jersey introduced a new
cold medicine called Coldex. (For proprietary
reasons, the actual name of the product is with-
held.) Coldex is now sold regularly in drugstores
and supermarkets across the United States. Prior
to launching the product nationally, the company
hired consultants from the Graduate School of
Management at Rutgers University (The State
University of New Jersey) to help the company
build a monthly forecast model for Coldex. This
Statistics in Action problem involves a portion of
the analysis conducted by the consultants.

Consider the task of forecasting the sales of
Coldex for the first 3 months of the third year of
the product’s existence. The company provided
data on the monthly sales (in thousands of dol-
lars) for the first 2 years of the product’s life. The
data, saved in the COLDEX file, are listed in
Table SIA13.1. In the Statistics in Action Revisit-
ed sections listed below, we demonstrate several
forecasting methods used by the consultants.

Statistics in Action Revisited

• Forecasting Coldex Sales with Exponential Smooth-
ing (p. 13-33)

• Forecasting Coldex Sales with Simple Linear Regres-
sion (p. 13-37)

• Forecasting Coldex Sales with a Seasonal Regression
Model (p. 13-42)

Forecasting the Monthly Sales of 
a New Cold Medicine

STATISTICS IN ACTION

COLDEX

TABLE SIA13.1 Coldex Monthly Sales Data

Year Month Time Sales

1 Jan 1 3394
Feb 2 4010
Mar 3 924
Apr 4 205
May 5 293
Jun 6 1130
Jul 7 1116

Aug 8 4009
Sep 9 5692
Oct 10 3458
Nov 11 2849
Dec 12 3470

2 Jan 13 4568
Feb 14 3710
Mar 15 1675
Apr 16 999
May 17 986
Jun 18 1786
Jul 19 2253

Aug 20 5237
Sep 21 6679
Oct 22 4116
Nov 23 4109
Dec 24 5124

Source: Personal communication from Carol Cowley, Carla Marchesini,
and Ginny Wilson, Rutgers University, Graduate School of
Management.
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profits that can be used to describe and evaluate the performance of the business. The
U.S. economy can be thought of as a system that generates streams of data that include
the gross domestic product, the Consumer Price Index, and the unemployment rate.

The methods of this chapter focus exclusively on the time series data generated by
a process. Properly analyzed, these data reveal much about the past and future behavior
of the process. Time series data, like other types of data we have discussed in previous
chapters, are subjected to two kinds of analyses: descriptive and inferential. Descriptive
analyses use graphical and numerical techniques to provide a clear understanding of any
patterns that are present in the time series. After graphing the data, you will often want
to use it to make inferences about the future values of the time series (i.e., you will want
to forecast future values). For example, once you understand the past and present trends
of the Dow Jones Industrial Average, you would probably want to forecast its future
trend before making decisions about buying and selling stocks. Since significant
amounts of money may be riding on the accuracy of your forecasts, you would be inter-
ested in measures of their reliability. Forecasts and their measures of reliability are ex-
amples of inferential techniques in time series analysis.

13.1 Descriptive Analysis: Index Numbers

The most common technique for characterizing a business or economic time series is to
compute index numbers. Index numbers measure how a time series changes over time.
Change is measured relative to a preselected time period, called the base period.

Definition 13.1
An index number measures the change in a variable over time relative to the value
of the variable during a specific base period.

Two types of indexes dominate business and economic applications: price and
quantity indexes. Price indexes measure changes in the price of a commodity or group of
commodities over time. The Consumer Price Index (CPI) is a price index because it
measures price changes of a group of commodities that are intended to reflect typical
purchases of American consumers. On the other hand, an index constructed to measure
the change in the total number of automobiles produced annually by American manu-
facturers would be an example of a quantity index.

Methods of calculating index numbers range from very simple to extremely com-
plex, depending on the numbers and types of commodities represented by the index.
Several important types of index numbers are described in this section.
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13-5SECTION 13.1 Descriptive Analysis: Index Numbers

SILVER

TABLE 13.1 Silver Prices, 1975–2005

Year Price ($/oz.) Year Price ($/oz.) Year Price ($/oz.)

1975 4.42 1985 6.14 1995 5.20
1976 4.35 1986 5.47 1996 5.18
1977 4.62 1987 7.01 1997 4.89
1978 5.40 1988 6.53 1998 5.48
1979 11.09 1989 5.50 1999 5.22
1980 20.64 1990 4.82 2000 4.97
1981 10.52 1991 4.04 2001 4.37
1982 7.95 1992 3.94 2002 4.60
1983 11.44 1993 4.30 2003 4.80
1984 8.14 1994 5.30 2004 6.67

2005 7.32

Source: Standard & Poor’s. Current Statistics, Dec. 2005; www.nma.org/enumerate/silver.

Simple Index Numbers
When an index number is based on the price or quantity of a single commodity, it is
called a simple index number.

Definition 13.2
A simple index number is based on the relative changes (over time) in the price or
quantity of a single commodity.

For example, consider the price of silver (in dollars per fine ounce) between 1975
and 2005, shown in Table 13.1. To construct a simple index to describe the relative
changes in silver prices, we must first choose a base period. The choice is important be-
cause the price for all other periods will be compared with the price during the base peri-
od. We select 1975 as the base period, a time just preceding the period of rapid economic
inflation associated with dramatic oil price increases.

To calculate the simple index number for a particular year, we divide that year’s
price by the price during the base year and multiply the result by 100. Thus, for the 1980
silver price index number, we calculate

Similarly, the index number for 2005 is

The index number for the base period is always 100. In our example, we have

Thus, the silver price has risen by 367% (the difference between the 1980 and 1975
index numbers) between 1975 and 1980, and by only 65.6% between 1975 and 2005. The
simple index numbers for silver prices between 1975 and 2005 are given in Table 13.2
and are portrayed graphically in Figure 13.1.The steps for calculating simple index num-
bers are summarized in the next box.

1975 index number = ¢1975 silver price
1975 silver price

≤100 = 100

2005 index number = ¢2005 silver price
1975 silver price

≤100 = ¢7.32
4.42
≤100 = 165.6

1980 index number = ¢1980 silver price
1975 silver price

≤100 = ¢20.64
4.42

≤100 = 467.0
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FIGURE 13.1

MINITAB graph of simple silver price index

SILVER

TABLE 13.2 Simple Index Numbers for
Silver Prices (Base 1975)

Year Index Year Index

1975 100.0 1991 91.4
1976 98.4 1992 89.1
1977 104.5 1993 97.3
1978 122.2 1994 119.9
1979 250.9 1995 117.6
1980 467.0 1996 117.2
1981 238.0 1997 110.6
1982 179.9 1998 124.0
1983 258.8 1999 118.1
1984 184.2 2000 112.4
1985 138.9 2001 98.9
1986 123.8 2002 104.1
1987 158.6 2003 108.6
1988 147.7 2004 150.9
1989 124.4 2005 165.6
1990 109.1

Now Work Exercise 13.6

Steps for Calculating a Simple Index Number

1. Obtain the prices or quantities for the commodity over the time period of interest.

2. Select a base period.

3. Calculate the index number for each period according to the formula

Symbolically,

where is the index number at time t, is the time series value at time t, and 
is the time series value at the base period.

Y0YtIt

It = ¢Yt

Y0
≤100

Index number at time t = ¢ Time series value at time t
Time series value at base period

≤100

Composite Index Numbers
A composite index number represents combinations of the prices or quantities of sev-
eral commodities. For example, suppose you want to construct an index for the total
number of sales of the three major automobile manufacturers in the United States:
General Motors, Ford, and Chrysler. The first step is to collect data on the sales of
each manufacturer during the period in which you are interested, say 1980–2005. To
summarize the information from all three time series in a single index, we add the
sales of each manufacturer for each year—that is, we form a new time series consist-
ing of the total number of automobiles sold by the three manufacturers. Then we con-
struct a simple index for the total of the three series. The resulting index is called a
simple composite index. We illustrate the construction of a simple composite index in
Example 13.1.
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13-7SECTION 13.1 Descriptive Analysis: Index Numbers

EXAMPLE 13.1
Constructing a
Simple Composite
Index for Hi-Tech
Stocks

HITECH

TABLE 13.3 Monthly Closing Prices of Three High-Technology Company Stocks

Year Month Time IBM Intel Microsoft

2004 JAN 1 99.23 30.52 27.73
FEB 2 96.50 29.20 26.61
MAR 3 91.84 27.20 25.00
APR 4 88.17 25.73 26.20
MAY 5 88.59 28.55 26.30
JUN 6 88.15 27.60 28.64
JUL 7 87.07 24.38 28.57
AUG 8 84.69 21.29 27.38
SEP 9 85.74 20.06 27.73
OCT 10 89.75 22.26 28.05
NOV 11 94.24 22.38 26.81
DEC 12 98.58 23.39 26.72

2005 JAN 13 93.42 22.45 26.28
FEB 14 92.58 23.99 25.16
MAR 15 91.38 23.23 24.17
APR 16 76.38 23.52 25.30
MAY 17 75.55 26.96 25.80
JUN 18 74.20 26.02 24.84
JUL 19 83.46 27.14 25.61
AUG 20 80.62 25.72 27.38
SEP 21 80.22 24.65 25.73
OCT 22 81.88 23.50 25.70
NOV 23 88.90 26.68 27.68
DEC 24 82.20 24.96 26.15

Source: Standard & Poor’s NYSE Daily Stock Price Record, 2004–2005.

Definition 13.3
A simple composite index is a simple index for a time series consisting of the total
price or total quantity of two or more commodities.

Problem One of the primary uses of index numbers is to characterize changes in stock
prices over time. Stock market indexes have been constructed for many different types
of companies and industries, and several composite indexes have been developed to
characterize all stocks. These indexes are reported on a daily basis in the news media
(e.g., Standard and Poor’s 500 Stocks Index and Dow Jones 65 Stocks Index).

Consider the monthly closing prices (i.e., closing prices on the last day of each
month) given in Table 13.3 for three high-technology company stocks listed on the New
York Stock Exchange between 2004 and 2005. To see how this type of stock fared, con-
struct a simple composite index using January 2004 as the base period. Graph the index,
and comment on its implications.

Solution First, we calculate the total for the three stock prices each month. These to-
tals are shown in the “TOTAL” column on the Excel workbook displayed in Figure 13.2.
Then the simple composite index is calculated by dividing each monthly total by the
January 2004 total. The index values are given in the last column of Figure 13.2, and a
graph of the simple composite index is shown in Figure 13.3.

The plot of the simple composite index for these high-technology stocks shows a
generally decreasing trend over the 2-year period. The composite price of these high-
technology stocks dropped about 15% from January 2004 to December
2005 

Look Back The difference between two index numbers gives the percentage change in
the value of the time series variable between the two time periods.

(Index = 84.65).
(Index = 100)
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FIGURE 13.2

Excel workbook with simple
composite index of stock
prices

FIGURE 13.3

MINITAB graph of simple
composite index for three
stock prices

Now Work Exercise 13.10c, d �

A simple composite price index has a major drawback: The quantity of the com-
modity that is purchased during each period is not taken into account. Only the price to-
tals are used to calculate the index. We can remedy this situation by constructing a
weighted composite price index.

Definition 13.4
A weighted composite price index weights the prices by quantities purchased prior
to calculating totals for each time period. The weighted totals are then used to com-
pute the index in the same way that the unweighted totals are used for simple com-
posite indexes.
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Solution First, we calculate the weighted price totals for each time period, using the
January 2004 quantities as weights. Thus,

 = 69,746

 = 500(82.20) + 100(24.96) + 1,000(26.15)

 December 2005 weighted total = a
4

i = 1
Qi, Jan. 2004Pi, Dec. 2005

 = 80,397

 = 500(99.23) + 100(30.52) + 1,000(27.73)

 January 2004 weighted total = a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2004

13-9SECTION 13.1 Descriptive Analysis: Index Numbers

EXAMPLE 13.2
Constructing A
Laspeyres Index

TABLE 13.4 Prices of High-Technology Stocks with
Quantities Purchased

IBM Intel Microsoft

Shares purchased 500 100 1,000
January 2004 price 99.23 30.52 27.73
December 2005 price 82.20 24.96 26.15

Since the quantities purchased change from time period to time period, the choice
of which time period’s quantities to use as the basis for the weighted composite index is
an important one. A Laspeyres index uses the base period quantities as weights. The
rationale is that the prices at each time period should be compared as if the same quan-
tities were purchased each period as were purchased during the base period. This
method measures price inflation (or deflation) by fixing the purchase quantities at their
base period values. The method for calculating a Laspeyres index is given in the box.

Steps for Calculating a Laspeyres Index

1. Collect price information for each of the k price series to be used in the compos-
ite index. Denote these series by 

2. Select a base period. Call this time period 

3. Collect purchase quantity information for the base period. Denote the k quanti-
ties by 

4. Calculate the weighted totals for each time period according to the formula

5. Calculate the Laspeyres index, at time t by taking the ratio of the weighted
total at time t to the base period weighted total and multiplying by 100—that is,

It =

a
k

i = 1
Qit0

Pit

a
k

i = 1
Qit0

Pit0

* 100

It,

a
k

i = 1
Qit0

Pit

Q1t0
, Q2t0

, Á , Qkt0
.

t0.

P1t, P2t, Á , Pkt.

Problem The January 2004 and December 2005 prices for the three high-technology
company stocks are given in Table 13.4. Suppose that, in January 2004, an investor pur-
chased the quantities shown in the table. [Note: Only two prices are used to simplify the
example. The same methods can be applied to calculate the index for other months.]
Calculate the Laspeyres index for the investor’s portfolio of high-technology stocks
using January 2004 as the base period.
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Then the Laspeyres index is calculated by multiplying the ratio of each weighted total to
the base period weighted total by 100. Thus,

Look Back The implication is that these stocks decreased in price by about
from January 2004 to December 2005.(100 - 87%) = 13%

 IDec. 2005 =

a
4

i = 1
Qi, Jan. 2004Pi, Dec. 2005

a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2005

* 100 =

69,746
80,397

* 100 = 86.75

 IJan. 2004 =

a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2004

a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2004

* 100 =

80,397
80,397

* 100 = 100

Now Work Exercise 13.14b �

The Laspeyres index is appropriate when the base period quantities are reason-
able weights to apply to all time periods. This is the case in applications such as that de-
scribed in Example 13.2, where the base period quantities represent actual quantities of
stock purchased and held for some period of time. Laspeyres indexes are also appropri-
ate when the base period quantities remain reasonable approximations of purchase
quantities in subsequent periods. However, it can be misleading when the relative pur-
chase quantities change significantly from those in the base period.

Probably the best-known Laspeyres index is the all-items Consumer Price Index
(CPI). This monthly composite index is made up of hundreds of item prices, and the
U.S. Bureau of Labor Statistics (BLS) sampled over 30,000 families’ purchases in
1982–1984 to determine the base period quantities. Thus, beginning in 1988, the all-
items CPI published each month reflects quantities purchased in 1982–1984 by a sample
of families across the United States. However, as prices increase for some commodities
more quickly than for others, consumers tend to substitute less expensive commodities
where possible. For example, as automobile and gasoline prices rapidly inflated in the
mid-1970s, consumers began to purchase smaller cars. The net effect of using the base
period quantities for the CPI is to overestimate the effect of inflation on consumers, be-
cause the quantities are fixed at levels that will actually change in response to price
changes.

There are several solutions to the problem of purchase quantities that change rel-
ative to those of the base period. One is to change the base period regularly, so that the
quantities are regularly updated. A second solution is to compute the index at each time
period by using the purchase quantities of that period, rather than those of the base pe-
riod. A Paasche index is calculated by using price totals weighted by the purchase quan-
tities of the period the index value represents. The steps for calculating a Paasche index
are given in the box.

Steps for Calculating a Paasche Index

1. Collect price information for each of the k price series to be used in the compos-
ite index. Denote these series by 

2. Select a base period. Call this time period 

3. Collect purchase quantity information for every period. Denote the k quantities
for period t by 

4. Calculate the Paasche index for time t by multiplying the ratio of the weighted
total at time t to the weighted total at time (base period) by 100, where the
weights used are the purchase quantities for time period t. Thus,

t0

Q1t, Q2t, Á , Qkt.

t0.

P1t, P2t, Á , Pkt.
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13-11SECTION 13.1 Descriptive Analysis: Index Numbers

EXAMPLE 13.3
Constructing a
Paasche Index for
Hi-Tech Stock Prices

TABLE 13.5 Prices and Volumes of High-Technology Stocks

IBM INTEL MICROSOFT

Price Volume Price Volume Price Volume

January 2004 99.23 6.1 30.52 59.5 27.73 63.6
December 2005 82.20 5.4 24.96 54.1 26.15 62.9

Source: Standard & Poor’s. NYSE Daily Stock Price Record, Jan. 2004, 2005; http://table.finance.yahoo.com.

It =

a
k

i = 1
QitPit

a
k

i = 1
QitPit0

* 100

Problem The January 2004 and December 2005 prices and volumes (actual quantities
purchased) in millions of shares for the three high-technology company stocks are
shown in Table 13.5. Calculate and interpret the Paasche index, using January 2004 as
the base period.

Solution The key to calculating a Paasche index is to remember that the weights (pur-
chase quantities) change for each time period. Thus,

The implication is that Dec. 2005 prices represent a de-
crease from Jan. 2004 prices, assuming the purchase quantities were at Dec. 2005 levels
for both periods.

(100 - 87.5)% = 12.5%

 =

3,439.1
3,931.2

* 100 = 87.5

 =

(5.4)(82.20) + (54.1)(24.96) + (62.9)(26.15)
(5.4)(99.23) + (54.1)(30.52) + (62.9)(27.73)

* 100

 IDec. 2005 =

a
4

i = 1
Qi, Dec. 2005Pi, Dec. 2005

a
4

i = 1
Qi, Dec. 2005Pi, Jan. 2005

* 100

 IJan. 2004 =

a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2004

a
4

i = 1
Qi, Jan. 2004Pi, Jan. 2004

* 100 = 100

Now Work Exercise 13.14d �

The Paasche index is most appropriate when you want to compare current prices
to base period prices at current purchase levels. However, there are several major prob-
lems associated with the Paasche index. First, it requires that purchase quantities be
known for every time period. This rules out a Paasche index for applications such as the
CPI because the time and monetary resource expenditures required to collect quantity
information are considerable. (Recall that more than 30,000 families were sampled to
estimate purchase quantities in 1982–1984.) A second problem is that although each
period is compared to the base period, it is difficult to compare the index at two other
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periods because the quantities used are different for each period. Consequently, the
change in the index is affected by changes in both prices and quantities. This fact makes
it difficult to interpret the change in a Paasche index between periods when neither is
the base period.

Although there are other types of indexes that use different weighting factors, the
Laspeyres and Paasche indexes are the most popular composite indexes. Depending on
the primary objective in constructing an index, one of them will probably be suitable for
most purposes.

Exercises 13.1–13.14
Learning the Mechanics
13.1 Explain in words how to construct a simple index.
13.2 Explain in words how to calculate the following types of

indexes:
a. Simple composite index
b. Weighted composite index
c. Laspeyres index
d. Paasche index

13.3 Explain in words the difference between Laspeyres and
Paasche indexes.

13.4 The table below gives the prices for three products (A, B,
and C) for the four quarters of last year.

Quarter A B C

1 3.25 1.75 8.00
2 3.50 1.25 9.35
3 3.90 1.20 9.70
4 4.25 1.00 10.50

a. Compute a simple index for the Quarter 4 price of prod-
uct A, using Quarter 1 as the base period.

b. Compute a simple index for the Quarter 2 price of prod-
uct B, using Quarter 1 as the base period.

c. Compute a simple composite index for the Quarter 4 price
of all three products, using Quarter 1 as the base period.

d. Compute a simple composite index for the Quarter 4 price
of all three products, using Quarter 2 as the base period.

13.5 Refer to Exercise 13.4. The next table gives the quantities
purchased for three products (A, B, and C) for the four
quarters of last year.

Quarter A B C

1 100 20 50
2 200 25 35
3 250 50 25
4 300 100 20

a. Compute a Laspeyres index for the Quarter 4 price of all
three products, using Quarter 1 as the base period.

b. Compute a Paasche index for the Quarter 4 price of all
three products, using Quarter 2 as the base period.

Applying the Concepts—Basic
13.6 Annual median family income. The next table lists the U.S.

median annual family income every 5 years during the peri-
od 1975–2000. It also contains several values for each of two
simple indexes for median family income.
a. Calculate the missing values of each simple index.

b. Interpret the index for 1990.

FAMINCOME

Year Income ($) Base 1975 Index Base 1980 Index

1975 13,719 – 65.26
1980 21,023 153.24 –
1985 27,735 202.16 –
1990 35,353 257.69 –
1995 40,611 – –
2000 50,890 – –

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2003.

13.7 Annual U.S. beer production. The table below describes
U.S. beer production (in millions of barrels) for the period
1980–2005.
a. Use 1980 as the base period to compute the simple index

for this time series. Interpret the value for 2005.
b. Refer to part a. Is this an example of a quantity index or

a price index?
c. Recompute the simple index using 1991 as the base peri-

od. Plot the two indexes on the same graph. What pat-
tern do you observe?

USBEER

Year Beer Year Beer Year Beer

1980 194 1989 199 1998 198
1981 194 1990 202 1999 198
1982 196 1991 204 2000 200
1983 196 1992 201 2001 199
1984 193 1993 202 2002 200
1985 194 1994 203 2003 195
1986 197 1995 200 2004 197
1987 195 1996 200 2005 195
1988 197 1997 199

Source: 2005 Brewer’s Almanac, U.S. Beer Institute.

13.8 Quarterly single-family housing starts. The quarterly num-
bers of single-family housing starts (in thousands of
dwellings) in the United States from 2001 through 2005 are
recorded in the table on p. 13-13.
a. Using Quarter 1, 2001, as a base period, calculate the

simple index for this quarterly time series.
b. Interpret the simple index for Quarter 2, 2004.
c. By what percentage did the number of housing starts

increase between Quarter 1, 2001, and Quarter 4,
2005?

d. By what percentage did the number of housing starts
increase between Quarter 1, 2003, and Quarter 4,
2005?
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13-13SECTION 13.1 Descriptive Analysis: Index Numbers

QTRHOUSE

Year Quarter Housing Starts

2001 1 274
2 374
3 341
4 285

2002 1 293
2 386
3 361
4 319

2003 1 304
2 406
3 412
4 377

2004 1 345
2 456
3 440
4 370

2005 1 369
2 485
3 471
4 392

Source: U.S. Bureau of the Census, 2006.

13.9 Price of natural gas. The table below lists the price of natur-
al gas (in dollars per 1,000 cubic feet) between 1980 and
2004.

NATGAS

Year Price Year Price Year Price

1980 3.68 1995 6.06 2001 9.63
1990 5.80 1996 6.34 2002 7.91
1991 5.82 1997 6.94 2003 9.52
1992 5.89 1998 6.82 2004 10.74
1993 6.16 1999 6.69
1994 6.41 2000 7.71

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2006.

a. Using 1980 as the base period, calculate and plot the sim-
ple index for the price of natural gas from 1990 through
2004.

b. Use the simple index to interpret the trend in the price
of natural gas.

c. Is the index you constructed in part a a price or quantity
index? Explain.

Applying the Concepts—Intermediate
13.10 Employment in farm and nonfarm categories. Civilian em-

ployment is broadly classified by the federal government
into two categories—agricultural and nonagricultural.
Employment figures (in thousands of workers) for farm
and nonfarm categories for selected years from 1980 to
2003 are given in the table below.

CVEMPLOY

Year Farm Nonfarm Year Farm Nonfarm

1980 3,364 95,938 1995 3,440 121,460
1985 3,179 103,971 2000 2,464 134,427
1990 3,223 115,570 2003 2,275 135,461

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2005.

a. Compute simple indexes for each of the two time series
using 1980 as the base period.

b. Which segment has shown the greater percentage
change in employment over the period shown?

c. Compute a simple composite index for total employ-
ment for the years 1980–2003. Use 1980 as a base period.

d. Refer to part c. Interpret the composite index value
for 2003.

13.11 GDP personal consumption expenditures. The gross do-
mestic product (GDP) is the total national output of
goods and services valued at market prices. As such, the
GDP is a commonly used barometer of the U.S. econo-
my. One component of the GDP is personal consump-
tion expenditures, which is itself the sum of expenditures
for durable goods, nondurable goods, and services. The
GDP for these components (in billions of dollars) is
shown in the next table, in 5-year increments from 1960
to 2004.

a. Using these three component values, construct a simple
composite index for the personal consumption compo-
nent of GDP. Use 1970 as the base year.

b. Suppose we want to update the index by using 1980 as
the base year. Update the index using only the index val-
ues you calculated in part a, without referring to the
original data.

c. Graph the personal consumption expenditure index for
the years 1960–2004, first using 1970 as the base year and
then using 1980 as the base year. What effect does
changing the base year have on the graph of this index?

GDP

Year Durables Nondurables Services

1960 $ 43.5 $ 153.1 $ 135.9
1965 63.5 191.9 189.2
1970 85.3 270.4 290.8
1975 134.3 416.0 474.5
1980 212.5 682.9 852.7
1985 352.9 919.4 1,395.1
1990 468.2 1,229.2 2,063.8
1995 589.7 1,497.3 2,882.0
2000 803.9 1,972.9 3,906.9
2004 993.9 2,377.0 4,859.0

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2005;
www.bea.gov.

13.12 GDP personal consumption expenditures (cont’d). Refer
to Exercise 13.11. Suppose the output quantities in 1970,
measured in billions of units purchased, are as follows:

Durable goods: 10.9
Nondurable goods: 14.02
Services: 42.6
a. Use the outputs to calculate the Laspeyres index from

1960 to 2004 (same increments as in Exercise 13.11) with
1970 as the base period.

b. Plot the simple composite index of Exercise 13.11 and
Laspeyres index of part a on the same graph. Comment
on the differences between the two indexes.

13.13 Hourly earnings for nonsupervisory workers. The next
table presents the average hourly earnings and the aver-
age number of hours worked per week in 5-year incre-
ments from 1975 to 2000 for nonsupervisory workers in
three different industries.
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NONSUPER (Data for Exercise 13.13)

MANUFACTURING TRANSPORTATION AND PUBLIC UTILITIES WHOLESALE TRADE

Year Hourly Earnings Weekly Hours Hourly Earnings Weekly Hours Hourly Earnings Weekly Hours

1975 4.83 39.5 5.88 39.7 4.72 38.6
1980 7.27 39.7 8.87 39.6 6.95 38.4
1985 9.54 40.5 11.40 39.5 9.15 38.4
1990 10.83 40.8 12.97 38.9 10.79 38.1
1995 12.37 41.6 14.23 39.5 12.43 38.3
2000 14.38 41.7 16.22 39.6 15.20 38.4

Source: U.S. Bureau of the Census, Statistical Abstract of the United States, 2001.

Chapter 13 Time Series13-14

METALS

COPPER STEEL LEAD

Month Price Production Price Production Price Production

Jan 1133.0 104.0 187.75 8656 769.6 33.4
Feb 1380.0 98.9 219.92 8400 895.8 32.8
Mar 1380.0 105.0 250.85 9268 906.0 33.5
Apr 1386.4 111.0 224.55 8901 798.6 35.1
May 1520.0 109.0 181.90 9163 848.8 31.2
Jun 1520.0 113.0 180.00 9006 903.2 33.1
Jul 1532.8 104.0 222.50 9164 964.0 33.8
Aug 1800.0 107.0 249.32 9314 949.2 36.9
Sep 1800.0 112.0 217.38 9234 961.6 36.9
Oct 1800.0 111.0 237.62 9551 960.2 36.2
Nov 1800.0 104.0 248.00 8989 990.8 34.0
Dec 1800.0 114.0 223.57 8660 995.0 33.9

Source: The CRB Commodity Yearbook, 2005. New York: John Wiley & Sons, Inc.

a. Compute a simple index for average hourly earnings for
manufacturing workers over the period 1975–2000. Use
1975 as the base year. Do the same for transportation
and public utilities workers.

b. Plot the two simple indexes on the same graph and inter-
pret the results.

c. Compute simple composite indexes for hourly earnings
and weekly hours for the 24-year period. Use 1975 as the
base year.

d. Plot the two composite indexes, part c, on the same
graph and interpret the results.

13.14 Production and price of lead, steel, and copper. The level
of price and production of metals in the United States is
one measure of the strength of the industrial economy.
The table below lists the 2004 prices (in dollars per ton)
and production (in thousands of tons) for three metals im-
portant to U.S. industry.

a. Compute simple composite price and quantity indexes
for the 12-month period, using January as the base period.

b. Compute the Laspeyres price index for the 12-month
period, using January as the base period.

c. Plot the simple composite and Laspeyres indexes on the
same graph. Comment on the differences.

d. Compute the Paasche price index for metals for the 12-
month period, using January as the base period.

e. Plot the Laspeyres and Paasche indexes on the same
graph. Comment on the differences.

f. Compare the Laspeyres and Paasche index values for
September and December. Which index is more appro-
priate for describing the change in this 4-month period?
Explain.

13.2 Descriptive Analysis: Exponential Smoothing

As you have seen in the previous section, index numbers are useful for describing
trends and changes in time series. However, time series often have such irregular
fluctuations that trends are difficult to describe. Index numbers can be misleading in
such cases because the series is changing so rapidly. Methods for removing the rapid
fluctuations in a time series so the general trend can be seen are called smoothing
techniques.
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13-15SECTION 13.2 Descriptive Analysis: Exponential Smoothing

Exponential smoothing is one type of weighted average that assigns positive
weights to past and current values of the time series. A single weight, called the ex-
ponential smoothing constant, is selected so that is between 0 and 1. Then the expo-
nentially smoothed series, is calculated as follows:

Thus, the exponentially smoothed value at time t assigns the weight to the current se-
ries value and the weight to the previous smoothed value.

For example, consider the silver price time series for 1975–2005 in Table 13.1
(p. 13-5). Suppose we want to calculate the exponentially smoothed series using a
smoothing constant of The calculations proceed as follows:

All the exponentially smoothed values corresponding to are given in the
MINITAB worksheet, Figure 13.4. (Note: MINITAB gives the value of in row )

The actual silver prices and exponentially smoothed prices are graphed in Figure
13.5. Like many averages, the exponentially smoothed series changes less rapidly than
the time series itself. The choice of affects the smoothness of The smaller (closer
to 0) is the value of the smoother is Since small values of give more weight to
the past values of the time series, the smoothed series is not affected by rapid changes
in the current values and, therefore, appears smoother than the original series. Con-
versely, choosing near 1 yields an exponentially smoothed series that is much like
the original series—that is, large values of give more weight to the current value of
the time series so the smoothed series looks like the original series. This concept is il-
lustrated in Figure 13.6. The steps for calculating an exponentially smoothed series are
given in the box.

w
w

wEt.w,
Et.w

t + 1.Et

w = .3

o

 E1977 = .3Y1977 + (1 - .3)E1976 = .3(4.62) + .7(4.40) = 4.47

 E1976 = .3Y1976 + (1 - .3)E1975 = .3(4.35) + .7(4.42) = 4.40

 E1975 = Y1975 = 4.42

w = .3.

(1 - w)
w

Et = wYt + (1 - w)Et - 1

o

E3 = wY3 + (1 - w)E2

E2 = wY2 + (1 - w)E1

E1 = Y1

Et,
w

w,

Steps for Calculating an Exponentially Smoothed Series

1. Select an exponential smoothing constant, between 0 and 1. Remember that
small values of give less weight to the current value of the series and yield a
smoother series. Larger choices of assign more weight to the current value of
the series and yield a more variable series.

2. Calculate the exponentially smoothed series from the original time series 
as follows:

 Et = wYt + (1 - w)Et - 1

 o

 E3 = wY3 + (1 - w)E2

 E2 = wY2 + (1 - w)E1

 E1 = Y1

YtEt

w
w

w,
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FIGURE 13.5

MINITAB graph of exponentially smoothed silver prices(w = .3)

FIGURE 13.6

MINITAB graph of exponentially smoothed ( and ) silver
prices

w = .7w = .3

EXAMPLE 13.4
Constructing an
Exponentially
Smoothed Series for
IBM Stock Prices

Problem Refer to Example 13.1 (p. 13-7). Consider the IBM common stock price
from January 2004 to December 2005, shown in Table 13.3 (p. 13-7). Create the exponen-
tially smoothed series using and plot both series.w = .5,

FIGURE 13.4

MINITAB worksheet with exponentially
smoothed silver prices(w = .3)
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13-17SECTION 13.2 Descriptive Analysis: Exponential Smoothing

FIGURE 13.7

MINITAB worksheet with
exponentially smoothed

IBM stock prices(w = .5)

Solution To create the exponentially smoothed series with we calculate

These values, obtained using MINITAB, are shown on the MINITAB worksheet,
Figure 13.7. The plot of the original and exponentially smoothed series is shown in
Figure 13.8.

 E24 = wY24 + (1 - w)E23 = .5(82.20) + .5(85.0) = 83.60

 o

 E2 = wY2 + (1 - w)E1 = .5(96.50) + .5(99.23) = 97.87

 E1 = Y1 = 99.23

w = .5,

FIGURE 13.8

MINITAB graph of
exponentially smoothed

IBM stock prices(w = .5)
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Look Back The smoothed series provides a good picture of the general trend of the
original series. Note, too, that the exponentially smoothed series will be less sensitive to
any short-term deviations of the prices from the trend as occurred in 2004 and 2005.

Now Work Exercise 13.16 �

One of the primary uses of exponential smoothing is to forecast future values of a
time series. Because only current and past values of the time series are used in exponen-
tial smoothing, it is easily adapted to forecasting. We demonstrate this application of ex-
ponentially smoothed series in Section 13.4.

Exercises 13.15–13.22
Learning the Mechanics
13.15 Describe the effect of selecting an exponential constant

of Of Which will produce a smoother
trend? 

13.16 Consider the monthly time series shown in the table.

LM13_16

Exponentially Smoothed
Month t Series 

Jan. 1 280 —
Feb. 2 281 —
Mar. 3 250 265.3
Apr. 4 246 255.6
May 5 239 —
Jun. 6 218 —
Jul. 7 218 —
Aug. 8 210 —
Sep. 9 205 —
Oct. 10 206 —
Nov. 11 200 —
Dec. 12 200 —

a. Calculate the missing values in the exponentially
smoothed series using 

b. Graph the time series and the exponentially smoothed
series on the same graph.

Applying the Concepts—Basic

USBEER

13.17 Annual U.S. beer production. Refer to the annual U.S.
beer production time series, Exercise 13.7. (p. 13-12).

a. Calculate the exponentially smoothed series for U.S.
beer production for the period 1980–2005 using 

b. Calculate the exponentially smoothed series using

c. Plot the two exponentially smoothed series ( and
) on the same graph. Which smoothed series best

portrays the long-term trend?
13.18 Foreign fish production. Overfishing and pollution of U.S.

coastal waters have resulted in an increased dependence
by the United States on the fishing grounds of other coun-
tries. The next table describes the annual fish catch (in

w = .8
w = .2

w = .8.

w = .2.

w = .5.

(w = .5)Yt

w = .8.w = .2.

thousands of metric tons) in all fishing areas of Brazil and
Chile for selected years from 1990 to 2002.

FISHTONS

Year Chile Brazil

1990 5,195.4 802.9
1995 7,590.5 800.0
1998 3,265.3 706.8
1999 5,050.2 703.9
2000 4,300.0 766.8
2001 3,797.1 806.7
2002 4,271.5 822.1

Source: Statistical Division, Department of
Economics and Social Information and Policy
Analysis, United Nations. Statistical Yearbook, 2005.

a. Compute an exponentially smoothed series for both
Chile and Brazil, using a smoothing coefficient of 

b. Plot both actual series and both smoothed series on the
same graph. Describe the differences in variation of
catches over time between the two countries. For exam-
ple, do they move up and down together over time?

Applying the Concepts—Intermediate
13.19 Yearly price of gold. The price of gold is used by some fi-

nancial analysts as a barometer of investors’ expectations
of inflation, with the price of gold tending to increase as
concerns about inflation increase. The table below shows
the average annual price of gold (in dollars per ounce)
from 1986 through 2005.

GOLDYR

Year Price Year Price

1986 368 1996 389
1987 448 1997 333
1988 438 1998 294
1989 383 1999 278
1990 385 2000 279
1991 363 2001 273
1992 345 2002 310
1993 361 2003 363
1994 387 2004 409
1995 385 2005 444

Source: World Gold Council; www.gold.org.

w = .5.

MCCL9356_10_13.qxd  1/3/07  12:35 PM  Page 13-18



13-19SECTION 13.2 Descriptive Analysis: Exponential Smoothing

OPECOIL

Year t Imports, Year t Imports, Year t Imports,

1974 1 926 1985 12 479 1996 23 1,258
1975 2 1,171 1986 13 771 1997 24 1,378
1976 3 1,663 1987 14 876 1998 25 1,522
1977 4 2,058 1988 15 987 1999 26 1,543
1978 5 1,892 1989 16 1,232 2000 27 1,664
1979 6 1,866 1990 17 1,282 2001 28 1,770
1980 7 1,414 1991 18 1,233 2002 29 1,490
1981 8 1,067 1992 19 1,247 2003 30 1,671
1982 9 633 1993 20 1,339 2004 31 1,833
1983 10 540 1994 21 1,307
1984 11 553 1995 22 1,303

Source: Statistical Abstract of the United States, U.S. Bureau of the Census, 2005.

YtYtYt

a. Compute an exponentially smoothed series for the gold
price time series for the period from 1986 to 2005, using
a smoothing coefficient of 

b. Plot the original series and the exponentially smoothed se-
ries on the same graph. Comment on the trend observed.

13.20 Personal consumption in transportation. There has been
phenomenal growth in the transportation sector of the
economy since 1990.The personal consumption expenditure
figures (in billions of dollars) are given in the table below.

a. Compute exponentially smoothed values of this person-
al consumption time series, using the smoothing con-
stants and 

b. Plot the actual series and the two smoothed series on the
same graph. Comment on the trend in personal con-
sumption expenditure on transportation in the 2000s as
compared to the 1990s.

TRANSPRT

Year Expenditure on Transportation

1990 590.1
1991 548.9
1992 581.1
1993 607.6
1994 643.2
1995 654.6
1996 687.1
1997 727.4
1998 779.3
1999 831.6
2000 853.4
2001 872.0
2002 890.9
2003 912.3
2004 925.6
2005 931.5

Source: U.S. Bureau of the Census. Statistical Abstract of
the United States, 2006.

13.21 OPEC crude oil imports. The data in the table below are
the amounts of crude oil (millions of barrels) imported into
the United States from the Organization of Petroleum
Exporting Countries (OPEC) for the years 1974–2004.

w = .8.w = .2

w = .8.

a. Construct two exponentially smoothed series for this
time series, using and 

b. Plot the original series and the two smoothed series on
the same graph. Which smoothed series looks more like
the original series? Why?

13.22 S&P 500 Stock Index. Standard & Poor’s 500 Composite
Stock Index (S&P 500) is a stock market index. Like the
Dow Jones Industrial Average, it is an indicator of stock
market activity. The next table contains end-of-quarter
values of the S&P 500 for the years 1999–2006.

SP500

Year Quarter S&P 500 Year Quarter S&P 500

1999 1 1286.4 2003 1 848.2
2 1372.7 2 974.5
3 1282.7 3 996.0
4 1469.2 4 1111.9

2000 1 1498.6 2004 1 1126.2
2 1454.6 2 1140.8
3 1436.5 3 1114.6
4 1320.3 4 1211.9

2001 1 1160.3 2005 1 1180.6
2 1224.4 2 1191.3
3 1040.9 3 1228.8
4 1148.1 4 1248.3

2002 1 1147.4 2006 1 1294.9
2 989.8 2 1270.2
3 815.3 3 1335.8
4 879.8

Source: Standard & Poor’s Statistical Service: Current Statistics, 2006;
www.economagic.com.

a. Calculate and plot the exponentially smoothed series for
the quarterly S&P 500 using a smoothing constant of

b. Repeat part a, but use 
c. Which exponentially smoothed series do you prefer for

describing trends in the series? Explain.

w = .7.
w = .3.

w = .9.w = .1
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13.3 Time Series Components

*Another useful form is the multiplicative model: This can be changed to an additive form by
taking natural logarithms (i.e., ). See Section 13.8.ln Yt = ln Tt + ln Ct + ln St + ln Rt

Yt = TtCtStRt.

In the previous two sections, we showed how to use various descriptive techniques to ob-
tain a picture of the behavior of a time series. Now we want to expand our coverage to
include techniques that will let us make statistical inferences about the time series.These
inferential techniques are generally focused on the problem of forecasting future values
of the time series.

Before forecasts of future values of a time series can be made, some type of model
that can be projected into the future must be used to describe the series. Time series
models range in complexity from descriptive models, such as the exponential smoothing
models discussed in the previous section, to inferential models, such as the combinations
of regression and specialized time series models to be discussed later in this chapter.
Whether the model is simple or complex, the objective is the same: to produce accurate
forecasts of future values of the time series.

Many different algebraic representations of time series models have been pro-
posed. One of the most widely used is an additive model* of the form

The secular trend, also known as the long-term trend, is a time series compo-
nent that describes the long-term movements of For example, if you want to charac-
terize the secular trend of the production of automobiles since 1930, you would show 
as an upward-moving time series over the period from 1930 to the present.This does not
imply that the automobile production series has always moved upward from month to
month and from year to year, but it does mean the long-term trend has been an increase
over that period of time.

The cyclical effect, generally describes fluctuations of the time series about the
secular trend that are attributable to business and economic conditions. For example,
refer back to the monthly closing prices of three high-technology stocks for the years
2004–2005, Table 13.3. Recall that a plot of the simple composite index (Figure 13.3)
showed a generally decreasing secular trend. However, during periods of recession, the
index tends to lie below the secular trend, while in times of general economic expansion,
it lies above the long-term trend line.

The seasonal effect, describes the fluctuations in the time series that recur dur-
ing specific time periods. For example, quarterly power loads for a Florida utility compa-
ny tend to be highest in the summer months (Quarter III), with another smaller peak in
the winter months (Quarter I). The spring and fall (Quarters II and IV) seasonal effects
are negative, meaning that the series tends to lie below the long-term trend line during
those quarters.

The residual effect, is what remains of after the secular, cyclical, and seasonal
components have been removed. Part of the residual effect may be attributable to unpre-
dictable rare events (earthquake, presidential assassination, etc.) and part to the random-
ness of human actions. In any case, the presence of the residual component makes it
impossible to forecast the future values of a time series without error.Thus, the presence of
the residual effect emphasizes a point we first made in Chapter 10 in connection with re-
gression models: No business phenomena should be described by deterministic models.All
realistic business models, time series or otherwise, should include a residual component.

Each of the four components contributes to the determination of the value of at
each time period. Although it will not always be possible to characterize each compo-
nent separately, the component model provides a useful theoretical formulation that
helps the time series analyst achieve a better understanding of the phenomena affecting
the path followed by the time series.

Yt

YtRt,

St,

Ct,

Tt

Yt.
Tt,

Yt = Tt + Ct + St + Rt
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13.4 Forecasting: Exponential Smoothing

In Section 13.2, we discussed exponential smoothing as a method for describing a time
series that involved removing the irregular fluctuations. In terms of the time series com-
ponents discussed in the previous section, exponential smoothing tends to de-emphasize
(or “smooth”) most of the residual effects. This, coupled with the fact that exponential
smoothing uses only past and current values of the series, makes it a useful tool for fore-
casting time series.

Recall that the formula for exponential smoothing is

where the exponential smoothing constant, is a number between 0 and 1. We learned
that the selection of controls the smoothness of A choice near 0 places more em-
phasis (weight) on past values of the time series and therefore yields a smoother series;
a choice near 1 gives more weight to current values of the series.

Suppose the objective is to forecast the next value of the time series, The ex-
ponentially smoothed forecast for is simply the smoothed value at time t:

where is the forecast of To help interpret this forecast formula, substitute the
smoothing formula for 

Note that we have substituted for since the forecast for time t is the smoothed
value for time The final equation provides insight into the exponential smooth-
ing forecast: The forecast for time is equal to the forecast for time t, plus a
correction for the error in the forecast for time t, This is why the exponential-
ly smoothed forecast is called an adaptive forecast—the forecast for time is ex-
plicitly adapted for the error in the forecast for time t.

Because exponential smoothing consists of averaging past and present values, the
smoothed values will tend to lag behind the series when a long-term trend exists. In addi-
tion, the averaging tends to smooth any seasonal component. Therefore, exponentially
smoothed forecasts are appropriate only when the trend and seasonal components are rel-
atively insignificant. Since the exponential smoothing model assumes that the time series
has little or no trend or seasonal component, the forecast is used to forecast not only

but also all future values of that is, the forecast for two time periods ahead is

and for three time periods ahead is

The exponential smoothing forecasting technique is summarized in the box.

Ft + 3 = Ft + 2 = Ft + 1

Ft + 2 = Ft + 1

Yt + 1Yt + 1

Ft + 1

(t + 1)
(Yt - Ft).

Ft,(t + 1)
(t - 1).

Et - 1,Ft

 = Ft + w(Yt - Ft)

 = wYt + (1 - w)Ft

 Ft + 1 = Et = wYt + (1 - w)Et - 1

Et:
Yt + 1.Ft + 1

Ft + 1 = Et

Yt + 1

Yt + 1.

Et.w
w,

Et = wYt + (1 - w)Et - 1

Calculation of Exponentially Smoothed Forecasts

1. Given the observed time series first calculate the exponentially
smoothed values usingE1, E2, Á , Et,

Y1, Y2, Á , Yt,

Continued
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EXAMPLE 13.5
Forecasting Annual
Silver Prices with
Exponential
Smoothing

2. Use the last smoothed value to forecast the next time series value:

3. Assuming that is relatively free of trend and seasonal components, use the
same forecast for all future values of 

 o

 Ft + 3 = Ft + 1

 Ft + 2 = Ft + 1

Yt:
Yt

Ft + 1 = Et

 Et = wYt + (1 - w)Et - 1

 o

 E2 = wY2 + (1 - w)E1

 E1 = Y1

Two important points must be made about exponentially smoothed forecasts:

1. The choice of is crucial. If you decide that will be small (near 0), you will ob-
tain a smooth, slowly changing series of forecasts. On the other hand, the selection
of a large value of (near 1) will yield more rapidly changing forecasts that de-
pend mostly on the current values of the series. In general, several values of 
should be tried to determine how sensitive the forecast series is to the choice of 
Forecasting experience will provide the best basis for the choice of for a partic-
ular application.

2. The farther into the future you forecast, the less certain you can be of accuracy.
Since the exponentially smoothed forecast is constant for all future values, any
changes in trend or seasonality are not taken into account. However, the uncer-
tainty associated with future forecasts applies not only to exponentially smoothed
forecasts, but also to all methods of forecasting. In general, time series forecasting
should be confined to the short term.

w
w.
w

w

ww

Problem The annual silver prices from 1975 to 2005 are repeated in the MINITAB
worksheet, Figure 13.9, along with the exponentially smoothed values using and

Apply the exponential smoothing technique to the data from 1975 to 2002 in
order to forecast the silver prices from 2003 to 2005 using both and 

Solution First,we calculate the exponentially smoothed forecasts using Following
the steps outlined in the box, the forecast for 2003 is simply the smoothed price in 2002,

We use the same value as the forecast for 2004 and 2005:

The same steps are repeated using (The forecast for all 3 years is the
smoothed value in 2002, 4.59.) Both sets of forecasts are shown in Table 13.6.Also shown
are the actual silver prices from 2003 to 2005. The forecast error, defined as the actual
value minus the forecast value, is given for each exponentially smoothed forecast.

Look Back Notice that the one-step-ahead forecasts for 2003 have smaller forecast
errors than the two- and three-steps-ahead forecasts for 2004 and 2005. Neither the

w = .7.

 F2005 = E2002 = 4.80

 F2004 = E2002 = 4.80

F2003 = E2002 = 4.80 (shaded on Figure 13.9)

w = .3.

w = .7.w = .3
w = .7.

w = .3
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FIGURE 13.9

MINITAB worksheet with
exponentially smoothed
( and ) silver
prices

w = .7w = .5

TABLE 13.6 Silver Prices (2003–2005): Actual versus Forecast Values

Year Actual Forecast Forecast Error Forecast Forecast Error

2003 4.80 4.80 0 4.59 0.21
2004 6.67 4.80 1.87 4.59 2.08
2005 7.32 4.80 2.52 4.59 2.73

(w = .7)(w = .3)

nor the forecast projects the upturn in the silver prices in 2004 and 2005,
because exponentially smoothed forecasts implicitly assume no trend exists in the time
series. This example dramatically illustrates the risk associated with anything other than
very short-term forecasting.

w = .7w = .3

Now Work Exercise 13.25a �
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Many time series have long-term, or secular, trends. For such series, the exponen-
tially smoothed forecast is inappropriate for all but the very short term. In the next sec-
tion, we present an extension of the exponentially smoothed forecast—the Holt-Winters
forecast—that allows for secular trend in the forecasts.

13.5 Forecasting Trends: The Holt-Winters Forecasting Model (Optional)

The exponentially smoothed forecasts for the silver prices in the previous section
have large forecast errors, in part because they do not recognize the trend in the time
series. In this section, we present an extension of the exponential smoothing method
of forecasting that explicitly recognizes the trend in a time series. The Holt-Winters
forecasting model consists of both an exponentially smoothed component and a
trend component Consequently, the technique is sometimes called double expo-
nential smoothing. The trend component is used in the calculation of the exponen-
tially smoothed value. The following equations show that both and are weighted
averages:

Note that the equations require two smoothing constants, and each of which is
between 0 and 1.As before, controls the smoothness of a choice near 0 places more
emphasis on past values of the time series, while a value of near 1 gives more weight
to current values of the series, and de-emphasizes the past.

The trend component of the series is estimated adaptively, using a weighted aver-
age of the most recent change in the level, represented by and the trend es-
timate, represented by from the previous period. A choice of the weight near 0
places more emphasis on the past estimates of trend, while a choice of near 1 gives
more weight to the current change in level.

The calculation of the Holt-Winters components, which proceeds much like the ex-
ponential smoothing calculations, is summarized in the box.

v
vTt - 1,

(Et - Et - 1),

w
Et;w

v,w

 Tt = v(Et - Et - 1) + (1 - v)Tt - 1

 Et = wYt + (1 - w)(Et - 1 + Tt - 1)

TtEt

(Tt).
(Et)

*The calculation begins at time rather than at because the first two observations are needed to ob-
tain the first estimate of trend, As an option, some statistical software packages use simple linear regression
to estimate and for the model and T1 = bN 1.E(Yt) = b0 + b1t, E1 = bN 0T1;E1

T2.
t = 1t = 2

Steps for Calculating Components of the Holt-Winters Model

1. Select an exponential smoothing constant between 0 and 1. Small values of
give less weight to the current values of the time series and more weight to the
past. Larger choices assign more weight to the current value of the series.

2. Select a trend smoothing constant between 0 and 1. Small values of give less
weight to the current changes in the level of the series and more weight to the
past trend. Larger values assign more weight to the most recent trend of the series
and less to past trends.

3. Calculate the two components, and from the time series beginning at
time as follows:*

 o

 T3 = v(E3 - E2) + (1 - v)T2

 E3 = wY3 + (1 - w)(E2 + T2)

 T2 = Y2 - Y1

 E2 = Y2

t = 2
YtTt,Et

vv

ww
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EXAMPLE 13.6
Applying the Holt-
Winters Method to
Annual Sales Data

[Note: and are not defined.]T1E1

 Tt = v(Et - Et - 1) + (1 - v)Tt - 1

 Et = wYt + (1 - w)(Et - 1 + Tt - 1)

Solution Rather than perform the Holt-Winters calculations by hand, we used
MINITAB to generate the values of and for the annual series.All the and val-
ues are given on the MINITAB printout, Figure 13.10.* A graph of and is shown in
Figure 13.11. Note that the trend component measures the general upward trend in 

Look Back The choice of gives equal weight to the most recent trend and to past
trends in the sales of the firm. The result is that the exponential smoothing component

provides a smooth, upward-trending description of the firm’s sales.Et

v = .5

Yt.Tt

EtYt

TtEtTtEt

Now Work Exercise 13.24 �

Problem The yearly sales data for a firm’s first 35 years of operation are given in Table
13.7. Calculate the Holt-Winters exponential smoothing and trend components for this
time series using and Show the data and the exponential smoothing com-
ponent on the same graph.Et

v = .5.w = .7

*MINITAB uses simple linear regression to calculate the initial smoothed and trend values. See the footnote
at the bottom of page 13-24.

Our objective is to use the Holt-Winters exponentially smoothed series to forecast
the future values of the time series. For the one-step-ahead forecast, this is accomplished
by adding the most recent exponentially smoothed component to the most recent trend
component—that is, the forecast at time given observed values up to time is

The idea is that we are constructing the forecast by combining the most recent smoothed es-
timate, with the estimate of the expected increase (or decrease) attributable to trend,

The forecast for two steps ahead is similar, except that we add estimated trend for
two periods:

Ft + 2 = Et + 2Tt

Tt.Et,

Ft + 1 = Et + Tt

t,(t + 1),

SALES35

TABLE 13.7 A Firm’s Yearly Sales Revenue (thousands of dollars)

YEAR SALES REVENUE YEAR SALES REVENUE YEAR SALES REVENUE

t t t

1 4.8 13 48.4 25 100.3
2 4.0 14 61.6 26 111.7
3 5.5 15 65.6 27 108.2
4 15.6 16 71.4 28 115.5
5 23.1 17 83.4 29 119.2
6 23.3 18 93.6 30 125.2
7 31.4 19 94.2 31 136.3
8 46.0 20 85.4 32 146.8
9 46.1 21 86.2 33 146.1

10 41.9 22 89.9 34 151.4
11 45.5 23 89.2 35 150.9
12 53.5 24 99.1

YtYtYt
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FIGURE 13.10

MINITAB worksheet with
Holt-Winters exponentially
smoothed ( and )
sales data

v = .5w = .7

Similarly, for the k-step-ahead forecast, we add the estimated increase (or de-
crease) in trend over k periods:

The Holt-Winters forecasting methodology is summarized in the box.

Ft + k = Et + kTt
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EXAMPLE 13.7
Obtaining Holt-
Winters Forecasts for
Annual Sales

FIGURE 13.11

MINITAB graph of Holt-
Winters exponentially
smoothed ( and )
sales data

v = 5w = .7

Holt-Winters Forecasting

1. Calculate the exponentially smoothed and trend components, and for each
observed value of using the formulas given in the previous box.

2. Calculate the one-step-ahead forecast using

3. Calculate the k-step-ahead forecast using

Ft + k = Et + kTt

Ft + 1 = Et + Tt

Yt(t Ú 2)
Tt,Et

Problem Refer to Example 13.6 and Figure 13.10, which lists the firm’s 35 yearly sales
figures, along with the Holt-Winters components using and Use the Holt-
Winters forecasting technique to forecast the firm’s annual sales in years 36–40.

Solution From Figure 13.10, the smoothed and trend values for the last year are
and For year 36 we calculate

The forecast 2 years ahead is

For years 38–40 we find

Look Back Note that the forecast values increase from year 36 to year 40. This upward
trend in the forecast is a result of the Holt-Winters estimated trend component.

 F40 = 152.86 + 5(2.75) = 166.61

 F39 = 152.86 + 4(2.75) = 163.86

 F38 = 152.86 + 3(2.75) = 161.11

F37 = E35 + 2T35 = 152.86 + 2(2.75) = 158.36

F36 = E35 + T35 = 152.86 + 2.75 = 155.61

T35 = 2.75.E35 = 152.86

v = .5.w = .7

Now Work Exercise 13.25b �
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The selection of and as the smoothing and trend weights for the sales
forecasts in Example 13.7 was based on the objectives of assigning more weight to recent se-
ries values in the exponentially smoothed component, and of assigning equal weights to the
recent and past trend estimates. However, you may want to try several different combina-
tions of weights when using the Holt-Winters forecasting model so that you can assess the
sensitivity of the forecasts to the choice of weights.Experience with the particular time series
and Holt-Winters forecasts will help in the selection of and in a practical application.vw

v = .5w = .7

Exercises 13.23–13.31
Learning the Mechanics
13.23 How does the choice of the smoothing constant impact

an exponentially smoothed forecast?
13.24 Refer to Exercise 13.4 (p. 13-12). The table with the prices

for product A for the four quarters of last year is repro-
duced below. The Holt-Winters smoothing method with

and was applied to the data.

Quarter A Smoothed Value Trend

1 3.25 — —
2 3.50 3.50 0.25
3 3.90 3.78 ?
4 4.25 ? 0.29

a. Find the missing trend value for Quarter 3.
b. Find the missing smoothed value for Quarter 4.
c. Give the Holt-Winters forecast for the price in Quarter 5.

Applying the Concepts—Basic

USBEER

13.25 Annual U.S. beer production. Refer to Exercise 13.7
(p. 13-12) and the data on U.S. beer production (in millions
of barrels) for the years 1980–2005.

a. Use the 1980–2002 values to forecast the 2003–2005 pro-
duction, using simple exponential smoothing with 
With 

b. Use the Holt-Winters model with and to
forecast the 2003–2005 production. Repeat with 
and 

QTRHOUSE

13.26 Quarterly single-family housing starts. Refer to the quar-
terly housing start series, Exercise 13.8 (p. 13-13). Suppose
you want to forecast the number of new housing starts in
2006 using data for 2004 and 2005.

a. Calculate the exponentially smoothed values for 2004
and 2005 using 

b. Plot the housing-starts series and the exponentially
smoothed series on the same graph.

c. Use the exponentially smoothed data from 2004–2005 to
forecast the quarterly number of housing starts in 2006.

13.27 Consumer Price Index. The Consumer Price Index (CPI)
measures the increase (or decrease) in the prices of goods
and services relative to a base year. The CPI for the years
1990–2005 (using 1984 as a base period) is shown in the
next table.

a. Graph the time series. Do you detect a long-term trend?

w = .6.

v = .7.
w = .3

v = .3w = .7
w = .7.

w = .3.

v = .6w = .2

w

b. Calculate and plot the exponentially smoothed series for
the CPI using a smoothing constant of Use the ex-
ponentially smoothed values to forecast the CPI in 2006.

c. Use the Holt-Winters forecasting model with trend to
forecast the CPI in 2006. Use smoothing constants

and 

CPI

Year CPI Year CPI

1990 125.8 1998 163.0
1991 129.1 1999 166.6
1992 132.8 2000 171.5
1993 136.8 2001 177.1
1994 147.8 2002 179.9
1995 152.4 2003 184.0
1996 156.9 2004 188.9
1997 160.5 2005 195.3

Source: Survey of Current Business, U.S. Department
of Commerce, Bureau of Economic Analysis.

OPECOIL

13.28 OPEC crude oil imports. Refer to the annual OPEC oil
import data, Exercise 13.21. (p. 13-19).

a. Use the exponentially smoothed series you
constructed in Exercise 13.21a to forecast OPEC oil im-
ports in 2006.

b. Forecast OPEC oil imports in 2006 using the Holt-
Winters forecasting model with smoothing constants

and 
c. Annual OPEC crude oil imports in 2006 totaled 2,100

million barrels. Calculate the errors of the forecasts, parts
a and b. Which method yields the smallest forecast error?

Applying the Concepts—Intermediate

SP500

13.29 S&P 500 Stock Index. Refer to the quarterly Standard &
Poor’s 500 stock market index, Exercise 13.22 (p. 13-19).

a. Use to smooth the series from 1999 through 2005.
Then forecast the first three quarterly values in 2006
using only the information through the fourth quarter of
2005.

b. Repeat part a using 
13.30 S&P 500 Stock Index (cont’d). Refer to Exercise 13.29.

Suppose you want to use only the 2003–2005 S&P values to
forecast the quarterly 2006 values. Calculate the forecasts
using the Holt-Winters model with and 
Repeat with and v = .5.w = .7

v = .5.w = .3

w = .3.

w = .7

v = .8.w = .3

(w = .9)

v = .5.w = .4

w = .4.
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GOLDMON

Month 1998 1999 2000 2001 2002 2003 2004 2005

Jan 304.9 285.4 284.3 265.5 281.7 356.9 414.0 424.2
Feb 297.4 287.1 299.9 261.9 295.5 359.0 405.3 423.4
Mar 301.0 279.5 286.4 263.0 294.0 340.6 406.7 434.2
Apr 310.7 286.6 279.9 260.5 302.7 328.2 403.0 428.9
May 293.6 269.0 275.3 272.4 314.5 355.7 383.4 421.9
Jun 296.3 262.6 285.7 270.2 321.2 356.5 392.0 430.7
Jul 288.9 255.6 281.6 267.5 313.3 351.0 398.1 424.5
Aug 273.4 254.8 274.5 272.4 310.3 359.8 400.5 437.9
Sep 293.9 307.5 273.7 283.4 319.2 378.9 405.3 456.0
Oct 294.0 299.1 270.0 283.1 316.6 378.9 420.5 469.9
Nov 294.7 291.4 266.0 276.2 319.2 389.9 439.4 476.7
Dec 287.8 290.3 271.5 275.9 333.4 407.6 441.7 509.8

Sources: Standard & Poor’s Statistics, 2006; kitco.com Current Statistics, 2006.

13.31 Monthly gold prices. The fluctuation of gold prices is a re-
flection of the strength or weakness of the U.S. dollar. The
table below shows monthly gold prices from January 1998
to December 2005.

a. Use exponential smoothing with to calculate
monthly smoothed values from 1998 to 2004. Then fore-
cast the monthly gold prices for 2005.

w = .5

b. Calculate 12 one-step-ahead forecasts for 2005 by up-
dating the exponentially smoothed values with each
month’s actual value, and then forecasting the next
month’s value.

c. Repeat parts a–b using the Holt-Winters technique with
and v = .5.w = .5

13.6 Measuring Forecast Accuracy: MAD and RMSE

As demonstrated in Example 13.5. forecast error (i.e., the difference between the actual
time series value and its forecast) can be used to evaluate the accuracy of the forecast.
Knowledge of a forecast’s accuracy aids in the selection of both the forecasting method-
ology to be utilized and the parameters of the forecast formula (e.g., the weights in the
exponentially smoothed or Holt-Winters forecasts). Three popular measures of forecast
accuracy, both based on forecast errors, are the mean absolute deviation (MAD), the
mean absolute percentage error (MAPE), and the root mean squared error (RMSE) of
the forecasts. Their formulas are given in the box.

Measures of Forecast Accuracy for m Forecasts

1. Mean absolute deviation (MAD)

2. Mean absolute percentage error (MAPE)

3. Root mean squared error (RMSE)

RMSE = Qa
m

t = 1
(Yt - Ft)

2

m

MAPE =

a
m

t = 1
` (Yt - Ft)

Yt
`

m
* 100

MAD =

a
m

t = 1
ƒ Yt - Ft ƒ

m
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EXAMPLE 13.8
Comparing Measures
of Forecast Accuracy

FIGURE 13.12a

MINITAB forecasts of annual sales—exponential
smoothing model with w = .3

FIGURE 13.12b

MINITAB forecasts of annual sales—exponential
smoothing model with w = .7

Note that all three measures require one or more actual values of the time series
against which to compare the forecasts. Thus, we can either wait several time periods
until the observed values are available, or we can hold out several of the values at the
end of the time series, not using them to model the time series, but saving them for eval-
uating the forecasts obtained from the model.

Problem Refer to the annual sales data of Examples 13.6 and 13.7. In Example 13.7
we used the Holt-Winters model with and to forecast annual sales for
years 36–40. Consider two alternative forecasting models: exponential smoothing with

and exponential smoothing with MINITAB was used to obtain the fore-
casts for these alternative models. The MINITAB printouts shown in Figures 13.12
(a)–(c) give the forecasts (highlighted) for all three models. Suppose the actual sales val-
ues (in thousands of dollars) for years 36–40 are 150.2, 161.7, 159.3, 168.5, and 170.4, re-
spectively. Find measures of forecast accuracy (MAD, MAPE, and RMSE) for each of
the three forecasting models and use this information to evaluate the models.

Solution For ease of notation, we will number the forecasting models as follows.

Model 1: Exponential smoothing 

Model 2: Exponential smoothing 

Model 3: Holt-Winters 

The forecasts for the three models as well as forecast errors are listed in Table 13.8.
These forecast errors are used to find the MAD, MAPE, and RMSE measures of fore-
cast accuracy for each of the three models.

(w = .7, v = .5)

(w = .7)

(w = .3)

w = .7.w = .3

v = .5w = .7
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FIGURE 13.12c

MINITAB forecasts of annual sales—Holt-Winters model
with and v = .5w = .7

TABLE 13.8 Forecasts and Forecast Errors for Three Models of Annual Sales

MODEL 1 MODEL 2 MODEL 3

Year Actual Sales Forecast Error Forecast Error Forecast Error

36 150.2 142.7 7.5 150.5 155.6
37 161.7 142.7 19.0 150.5 11.2 158.4 3.3
38 159.3 142.7 16.6 150.5 8.8 161.1
39 168.5 142.7 25.8 150.5 18.0 163.8 4.7
40 170.4 142.7 27.7 150.5 19.9 166.6 3.8

-1.8

-5.4-0.3

Model 1:

 RMSE1 = B (7.5)2
+ (19.0)2

+ (16.6)2
+ (25.8)2

+ (27.7)2

5
= 20.62

 
MAPE1 = c ` 7.5

150.2
` + ` 19.0

161.7
` + ` 16.6

159.3
` + ` 25.8

168.5
` + ` 27.7

170.4
`

5
s

100 = 11.75

 MAD1 =

ƒ 7.5 ƒ + ƒ 19.0 ƒ + ƒ 16.6 ƒ + ƒ 25.8 ƒ + ƒ 27.7 ƒ

5
= 19.32
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Model 2:

Model 3:

The model with the smallest mean absolute deviation (MAD) is Model 3.
Similarly, Model 3 has the smallest mean absolute percentage error (MAPE) and the
smallest root mean square error (RMSE). Of the three forecasting models, then, Model
3 (the Holt-Winters method with and ) yields the most accurate predic-
tions of annual sales.

Look Back We expect the Holt-Winters method to yield more accurate forecasts for
annual sales since it explicitly accounts for trend in the sales data. The exponential
smoothing forecasts do not account for any increasing or decreasing trends in the data;
hence, they are the same for all five forecasted years. The accuracy of all three forecast-
ing methods, however, will decrease the farther we forecast into the future.

v = .5w = .7

 RMSE3 = B (-5.4)2
+ (3.3)2

+ (-1.8)2
+ (4.7)2

+ (3.8)2

5
= 4.00

 
MAPE3 = c ` -5.4

150.2
` + ` 3.3

161.7
` + ` -1.8

159.3
` + ` 4.7

168.5
` + ` 3.8

170.4
`

5
s

100 = 2.36

 MAD3 =

ƒ -5.4 ƒ + ƒ 3.3 ƒ + ƒ -1.8 ƒ + ƒ 4.7 ƒ + ƒ 3.8 ƒ

5
= 3.80

 RMSE2 = B (- .3)2
+ (11.2)2

+ (8.8)2
+ (18.0)2

+ (19.9)2

5
= 13.59

 
MAPE2 = c ` - .3

150.2
` + ` 11.2

161.7
` + ` 8.8

159.3
` + ` 18.0

168.5
` + ` 19.9

170.4
`

5
s

100 = 7.00

 MAD2 =

ƒ - .3 ƒ + ƒ 11.2 ƒ + ƒ 8.8 ƒ + ƒ 18.0 ƒ + ƒ 19.9 ƒ

5
= 11.64

Now Work Exercise 13.32 �

[Note: Most statistical software packages will automatically compute the values of
MAPE, MAD, and RMSE (also called the mean squared deviation, MSD) for all ob-
servations in the data set. For example, these statistics are shown in the middle of the
MINITAB printouts, Figures 13.12(a)–(c).]

Criteria such as MAPE, MAD, and RMSE for assessing forecast accuracy require
special care in interpretation. The number of time periods included in the evaluation is
critical to the decision about which forecasting model is preferred. The choice depends
on how many time periods ahead the analyst plans to forecast. With time periods in
your data, a good rule of thumb is to forecast ahead no more than time periods. Re-
member, however, that long-term forecasts are generally less accurate than short-term
forecasts.

We conclude this section with a comment. A major disadvantage of forecasting
with smoothing techniques (exponential smoothing or the Holt-Winters model) is that
no measure of the forecast error (or reliability) is known prior to observing the future
value. Although forecast errors can be calculated after the future values of the time se-
ries have been observed (as in Example 13.8), we prefer to have some measure of the ac-
curacy of the forecast before the actual values are observed. One option is to compute
forecasts and forecast errors for all observations in the data set and use these “past”
forecast errors to estimate the standard deviation of all forecast errors (i.e., the standard
error of the forecast). A rough estimate of this standard error is the value of RMSE, and
an approximate 95% prediction interval for any future forecast is

n

N/2
N

n
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[An interval like this is shown at the bottom of the MINITAB printouts, Figures
13.12(a)–(c).] However, since the theoretical distributional properties of the forecast er-
rors with smoothing methods are unknown, many analysts regard smoothing methods as
descriptive procedures rather than as inferential ones.

In the preceding chapters, we learned that predictions with inferential regression
models are accompanied by well-known measures of reliability. The standard errors of
the predicted values allow us to construct 95% prediction intervals. We discuss an infer-
ential time series forecasting model in the next section.

Ft ; 2(RMSE)

Recall that a pharma-
ceutical company hired
consultants at Rutgers
University to fore-

cast monthly sales
of a new brand

of cold medi-
cine called
Coldex. The
company pro-
vided month-
ly data on
Coldex sales
for the first 2
years of the
product’s life

and desires forecasts of sales for the first 3 months
of the third year. (The data are saved in the
COLDEX file.) One forecasting model consid-
ered by the consultants was an exponential smoothing
model with a smoothing constant of 
MINITAB was used to find the smoothed values of
the monthly series. The MINITAB plot of both the ac-
tual monthly sales and smoothed sales values is shown
in Figure SIA13.1, followed by the exponentially
smoothed forecasts in Figure SIA13.2.

The exponentially smoothed sales forecast for
each of the first 3 months of year 3 is the smoothed
value for the last month of the series (month 24). This
value, highlighted on Figure SIA13.2, is 4,870 thou-
sand dollars. MINITAB also gives approximate 95%
confidence bounds around the forecast. The interval
(highlighted on the printout) is (1750, 7989). Thus, we
are (approximately) 95% confident that the actual
sales for the month will be between 1,750 and 7,989
thousand dollars.This wide interval was deemed unus-
able by the pharmaceutical company; consequently,
the consultants searched for a better forecasting
model. One of these models is presented in the next
Statistics in Action Revisited (p. 13-37).

w = .7.

Forecasting Coldex Sales with Exponential Smoothing

STATISTICS IN ACTION REVISITED

Figure SIA13.1

MINITAB plot of monthly Coldex sales with exponentially
smoothed values (w = .7)

Figure SIA13.2

MINITAB forecasts of monthly Coldex sales
using exponential smoothing (w = .7)
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Exercises 13.32–13.37
Applying the Concepts—Basic

USBEER

13.32 Annual U.S. beer production. Refer to the beer produc-
tion forecasts, Exercise 13.25 (p. 13-28). In part a you ob-
tained forecasts of 2003–2005 beer production using
exponential smoothing with and 

a. Calculate the forecast errors for the exponentially
smoothed forecasts.

b. Calculate the forecast errors for the exponentially
smoothed forecasts.

c. Calculate MAD, MAPE, and RMSE for the exponential
smoothing forecasts using 

d. Calculate MAD, MAPE, and RMSE for the exponential
smoothing forecasts using 

e. Refer to parts c and d. Which forecast method do you
recommend?

13.33 Annual U.S. beer production (cont’d). Refer to the beer
production forecasts, Exercise 13.25 (p. 13-28). In part b
you obtained forecasts of 2003–2005 beer production
using the Holt-Winters model with and

a. Calculate the forecast errors for the 
Holt-Winters forecasts.

b. Calculate the forecast errors for the 
Holt-Winters forecasts.

c. Calculate MAD, MAPE, and RMSE for the
Holt-Winters forecasts.

d. Calculate MAD, MAPE, and RMSE for the
Holt-Winters forecasts.

e. Refer to parts c and d. Which forecast method do you
recommend?

SP500

13.34 S&P 500 Stock Index. Refer to your exponential smooth-
ing forecasts of the quarterly S&P 500 for 2006, Exercise
13.29 (p. 13-28).

a. Calculate MAD, MAPE, and RMSE for the forecasts
with 

b. Calculate MAD, MAPE, and RMSE for the forecasts
with 

c. Compare MAD, MAPE, and RMSE for the two simple
exponential smoothing forecast models. Which model
leads to more accurate forecasts?

13.35 S&P 500 Stock Index (cont’d). Refer to your Holt-Winters
forecasts of the quarterly S&P 500 for 2006, Exercise 13.30
(p. 13-28).

a. Calculate MAD, MAPE, and RMSE for the forecasts
with and v = .5.w = .3

w = .3.

w = .7.

w = .7, v = .3

w = .3, v = .7

w = .7, v = .3

w = .3, v = .7
(w = .7, v = .3).

(w = .3, v = .7)

w = .7.

w = .3.

w = .7

w = .3
w = .7.w = .3

b. Calculate MAD, MAPE, and RMSE for the forecasts
with and 

c. Compare MAD, MAPE, and RMSE for the two Holt-
Winters forecasts models. Which model leads to more
accurate forecasts?

Applying the Concepts—Intermediate

GOLDMON

13.36 Monthly gold prices. Refer to Exercise 13.31 (p. 13-29).
Two models were used to forecast the monthly 2005 gold
prices: an exponential smoothing model with and a
Holt-Winters model with and 

a. Use MAD, MAPE, and RMSE criteria to evaluate the
two models’ accuracy for forecasting the monthly 2005
values using the 1998–2004 data.

b. Use the MAD, MAPE, and RMSE criteria to evaluate
the two models’ accuracy when making the 12 one-
step-ahead forcasts, updating the models with each
month’s actual value before forecasting the next
month’s value.

13.37 U.S. school enrollments. The next table reports annual U.S.
school enrollment (in thousands) for the period 1980–2005.

SCHOOLENROLL

Year Enrollment Year Enrollment

1980 58,305 1993 63,241
1981 57,916 1994 63,986
1982 57,951 1995 64,764
1983 57,432 1996 65,743
1984 57,150 1997 66,470
1985 57,226 1998 66,983
1986 57,709 1999 67,667
1987 58,254 2000 68,146
1988 58,485 2001 69,936
1989 59,436 2002 71,215
1990 60,267 2003 71,442
1991 61,605 2004 71,688
1992 62,686 2005 72,075

Source: U.S. Census Bureau. Statistical Abstract of the United States, 2006.

a. Use the 1980 to 2000 enrollments and simple exponential
smoothing to forecast the 2001–2005 school enrollments.
Use 

b. Use the Holt-Winters model with and to
forecast the 2001–2005 enrollments.

c. Apply the MAD, MAPE, and RMSE criteria to evaluate
the two forecasting models of parts a and b. Which
model is better? Why?

v = .7w = .8
w = .8.

v = .5.w = .5
w = .5

v = .5.w = .7

13.7 Forecasting Trends: Simple Linear Regression

Perhaps the simplest inferential forecasting model is one with which you are familiar:
the simple linear regression model.A straight-line model is used to relate the time series,

to time, t, and the least squares line is used to forecast future values of 
Suppose a firm is interested in forecasting its sales revenues for each of the next 5

years. To make such forecasts and assess their reliability, a time series model must be

Yt.Yt,
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constructed. Refer again to the yearly sales data for a firm’s 35 years of operation given
in Table 13.7 (p. 13-25).A MINITAB plot of the data (Figure 13.13) reveals a linearly in-
creasing trend, so the model

seems plausible for the secular trend. We fit the model to the data
using SPSS; the resulting printout is shown in Figure 13.14. The least
squares model (highlighted on the printout) is:

(This least squares line is shown on Figure 13.13.)
We can now forecast sales for years 36–40. The forecasts of sales

and the corresponding 95% prediction intervals are shown (high-
lighted) on the SPSS printout Figure 13.15. For example, for 
we have

with the 95% prediction interval (141.3, 168.8). Similarly, we can ob-
tain the forecasts and prediction intervals for years 37–40. Although

it is not easily perceptible in the figure, the prediction intervals widen as we attempt
to forecast farther into the future. This agrees with the intuitive notion that short-
term forecasts should be more reliable than long-term forecasts.

YN36 = 155.0

t = 36,

YNt = bN 0 + bN 1t = .402 + 4.296t with R2
= .980

E(Yt) = b0 + b1t

13-35SECTION 13.7 Forecast Trends: Simple Linear Regression

FIGURE 13.13

MINITAB scatterplot of annual sales with least
squares line

FIGURE 13.14

SPSS printout of least squares
regression of annual sales

MCCL9356_10_13.qxd  1/3/07  12:36 PM  Page 13-35



Chapter 13 Time Series13-36

Problem 1

FIGURE 13.15

SPSS printout with 95%
prediction intervals for annual
sales

There are two problems associated with forecasting time series using a least
squares model.

We are using the least squares model to forecast values outside the region of observa-
tion of the independent variable, t—that is, we are forecasting for values of t between 36
and 40, but the observed sales are for t values between 1 and 35.As we noted in Chapters
10 and 11, it is extremely risky to use a least squares regression model for prediction out-
side the experimental region.

Problem 1 obviously cannot be avoided. Since forecasting always involves predic-
tions about the future values of a time series, some or all of the independent variables
will probably be outside the region of observation on which the model was developed. It
is important that the forecaster recognize the dangers of this type of prediction. If un-
derlying conditions change drastically after the model is estimated (e.g., if federal price
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Problem 2

controls are imposed on the firm’s products during the 36th year of operation), the fore-
casts and their confidence intervals are probably useless.

Although the straight-line model may adequately describe the secular trend of the sales,
we have not attempted to build any cyclical effects into the model. Thus, the effect of in-
flationary and recessionary periods will be to increase the error of the forecasts because
the model does not anticipate such periods.

Fortunately, the forecaster often has some degree of control over problem 2, as we
demonstrate in the remainder of the chapter.

In forming the prediction intervals for the forecasts, we made the standard regres-
sion assumptions (Chapters 10 and 11) about the random error component of the
model. We assumed the errors have mean 0, constant variance, and normal probability
distributions, and are independent. The latter assumption is dubious in time series mod-
els, especially in the presence of short-term trends. Often, if a year’s value lies above the
secular trend line, the next year’s value has a tendency to be above the line also—that is,
the errors tend to be correlated (see Figure 13.13).

We discuss how to deal with correlated errors in Section 13.9. For now, we can char-
acterize the simple linear regression forecasting method as useful for discerning secular
trends, but probably too simplistic for most time series.And, as with all forecasting meth-
ods, the simple linear regression forecasts should be applied only over the short term.

A second model consid-
ered by consultants to
forecast monthly sales

of a new cold medi-
cine (Coldex) was

a simple linear
regression model
with time (t) as
the independent
variable, where

The MINITAB
graph of the least
squares line is
shown in Figure

t = 1, 2, 3, Á , 24.

SIA13.3, followed by the simple linear regression
printout in Figure SIA13.4.

Note that the p-value for testing the slope coeffi-
cient is .047. Thus, at the model is statistically
useful for predicting monthly sales. However, the co-
efficient of determination is low only
about 17% of the sample variation in monthly sales
can be explained by the linear time trend.

The simple linear forecasts for each of the first 3
months of year 3 are shown on the MINITAB work-
sheet, Figure SIA13.5. MINITAB also gives a 95% pre-
diction interval for each forecast. The intervals for
months 25, 26, and 27 are (480.5, 8147.9), (549.7,
8290.4), and (616.5, 8435.3), respectively. For the first
month of year 3 (i.e., month 25), we are 95% confident

(R2
= .168);

a = .05,

Forecasting Coldex Sales with 
Simple Linear Regression

STATISTICS IN ACTION REVISITED

Figure SIA13.3

MINITAB plot of least
squares line for forecasting
monthly Coldex sales

Continued
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that the actual sales will fall between 480.5 and 8,147.9
thousand dollars. Similar interpretations are made for
the other two forecasts.

As with the exponential smoothing model, these
intervals were too wide to be of practical use by the
pharmaceutical company. How can the forecasting
model be improved? Examine Figure SIA13.3 and

note the cyclical trends in the monthly sales data.
Neither the exponential smoothing model nor the lin-
ear regression model account for this cyclical variation.
A forecasting model is needed that explicitly accounts
for such trends. Such a model is presented in the next
Statistics in Action Revisited (p. 13-42).

Chapter 13 Time Series13-38

Figure SIA13.4

MINITAB simple linear
regression printout for the
linear trend forecasting model

Figure SIA13.5

MINITAB worksheet with simple linear regression forecasts of monthly sales

13.8 Seasonal Regression Models

Many time series have distinct seasonal patterns. Retail sales are usually highest around
Christmas, spring, and fall, with lulls in the winter and summer periods. Energy usage is
highest in summer and winter, and lowest in spring and fall. Teenage unemployment
rises in summer months when schools are not in session and falls near Christmas when
many businesses hire part-time help.

Multiple regression models can be used to forecast future values of a time series
with strong seasonal components. To accomplish this, the mean value of the time series,

is given a mathematical form that describes both the secular trend and seasonal
components of the time series. Although the seasonal model can assume a wide variety
of mathematical forms, the use of dummy variables to describe seasonal differences is
common.

E(Yt),
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QTRPOWER

TABLE 13.9 Quarterly Power Loads (megawatts) for a Southern Utility Company,
1995–2006

Year Quarter Power Load Year Quarter Power Load

1995 1 68.8 2001 1 130.6
2 65.0 2 116.8
3 88.4 3 144.2
4 69.0 4 123.3

1996 1 83.6 2002 1 142.3
2 69.7 2 124.0
3 90.2 3 146.1
4 72.5 4 135.5

1997 1 106.8 2003 1 147.1
2 89.2 2 119.3
3 110.7 3 138.2
4 91.7 4 127.6

1998 1 108.6 2004 1 143.4
2 98.9 2 134.0
3 120.1 3 159.6
4 102.1 4 135.1

1999 1 113.1 2005 1 149.5
2 94.2 2 123.3
3 120.5 3 154.4
4 107.4 4 139.4

2000 1 116.2 2006 1 151.6
2 104.4 2 133.7
3 131.7 3 154.5
4 117.9 4 135.1

For example, consider the power load data for a Southern utility company shown
in Table 13.9. Data were obtained for each quarter from 1995 through 2006. A model
that combines the expected growth in usage and the seasonal component is

where

The MINITAB printout in Figure 13.16 shows the least squares fit of this model to the
data in Table 13.9.

Note that the model appears to fit well, with indicating that the model
accounts for about 91% of the sample variability in power loads over the 12-year period.
The global strongly supports the hypothesis that the
model has predictive utility. The model standard deviation of 7.86 indicates that the
model predictions will usually be accurate to within approximately or about

megawatts. Furthermore, indicates an estimated average growth in loadbN 1 = 1.64;16
;2(7.86),

F = 114.88 (p-value = .000)

R2
= .914,

 Q3 = b1 if Quarter 3
0 if Quarter 1, 2, or 4

 Q2 = b1 if Quarter 2
0 if Quarter 1, 3, or 4

 Q1 = b1 if Quarter 1
0 if Quarter 2, 3, or 4

 t = 48 for quarter 4 of 2006
 t = Time period, ranging from t = 1 for quarter 1 of 1995 to

E(Yt) = b0 + b1t + b2Q1 + b3Q2 + b4Q3
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FIGURE 13.16

MINITAB printout of least
squares fit to power load time
series

of 1.64 megawatts per quarter. Finally, the seasonal dummy variables have the following
interpretations (refer to Chapter 11):*

Quarter 1 loads average 13.66 megawatts more than Quarter 4 loads.

Quarter 2 loads average 3.74 megawatts less than Quarter 4 loads.

Quarter 3 loads average 18.47 megawatts more than Quarter 4 loads.

Thus, as expected, winter and summer loads exceed spring and fall loads, with the peak
occurring during the summer months.

In order to forecast the 2007 power loads, we calculate the predicted value for
50, 51, and 52, at the same time substituting the dummy variable appropriate for

each quarter. Thus, for 2007,

The predicted values and 95% prediction intervals (highlighted) are given on the
MINITAB worksheet, Figure 13.17.Also shown in Figure 13.17 are the actual 2007 quar-
terly power loads. Notice that all 2007 power loads fall inside the forecast intervals.

 YNQuarter 4 = bN 0 + bN 1(52) = 155.6

 YNQuarter 3 = bN 0 + bN 1(51) + bN 4 = 172.4

 YNQuarter 2 = bN 0 + bN 1(50) + bN 3 = 148.6

 YNQuarter 1 = bN 0 + bN 1(49) + bN 2 = 70.51 + 1.636(49) + 13.66 = 164.3

k = 49,
YNk

 bN 4 = 18.47

 bN 3 = -3.74

 bN 2 = 13.66

Now Work Exercise 13.39

*These interpretations assume a fixed value of t. In practical terms this is unrealistic, since each quarter is
associated with a different value of t. Nevertheless, the coefficients of the seasonal dummy variables provide
insight into the seasonality of these time series data.

The seasonal model used to forecast the power loads is an additive model be-
cause the secular trend component is added to the seasonal component

to form the model.A multiplicative model would have the same
form, except that the dependent variable would be the natural logarithm of power load;
that is,

(b2Q1 + b3Q2 + b4Q3)
(b1t)
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FIGURE 13.17

MINITAB worksheet with power load forecasts (megawatts)

To see the multiplicative nature of this model, we take the antilogarithm of both sides of
the equation to get

Constant Secular Seasonal Residual
trend component component

The multiplicative model often provides a better forecasting model when the time series
is changing at an increasing rate over time.

When time series data are observed monthly, a regression forecasting model needs
11 dummy variables to describe monthly seasonality; three dummy variables can be
used (as in the previous models) if the seasonal changes are hypothesized to occur quar-
terly. In general, this approach to seasonal modeling requires one dummy variable fewer
than the number of seasonal changes expected to occur.

There are approaches besides the regression dummy variable method for forecast-
ing seasonal time series.Trigonometric (sine and cosine) terms can be used in regression
models to model periodicity. Other time series models (the Holt-Winters exponential
smoothing model, for example) do not use the regression approach at all, and there are
various methods for adding seasonal components to these models. We have chosen to
discuss the regression approach because it makes use of the important modeling con-
cepts covered in Chapter 11, and because the regression forecasts are accompanied by
prediction intervals that provide some measure of the forecast reliability. While most
other methods do not have explicit measures of reliability, many have proved their merit
by providing good forecasts for particular applications. Consult the references at the end
of the chapter for details of other seasonal models.

 (')'* (')'* (''''')'''''* (')'*

 =  exp5b06 exp5b1t6 exp5b2Q1 + b3Q2 + b4Q36 exp5P6
Yt = exp5b0 + b1t + b2Q1 + b3Q2 + b4Q3 + P6

ln Yt = b0 + b1t + b2Q1 + b3Q2 + b4Q3 + P

ACTIVITY 13.1: Time Series

For this activity, select a recurring quantity from your own
life for which you have monthly records for at least two
years. This might be the cost of a utility bill, the number
of cell phone minutes used, or even your income. If you
do not have access to such records, use the Internet to
find similar data, such as median, monthly home prices
in your area for at least two years.

1. Which methods from this chapter might apply to your
data? Does there appear to be a seasonal compo-
nent affecting the data? If so, can you explain the
seasonal effect in simple terms?

2. Use methods from this chapter to predict the value
of your quantity for the next year. Be prepared to de-
fend your choice of methods.
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The consultants hired by
the pharmaceutical compa-
ny detected a cyclical

trend in the monthly
sales data. They

noted that sales of
the cold medicine
were higher dur-
ing the winter and
summer months as
compared to the
other months over
the 2-year period.
To account for this
seasonal trend,

they created 11 dummy variables for
the 12 months of the year. The seasonal forecasting
model takes the form

 + b9x8 + b10x9 + b11x10 + b12x11

 + b5x4 + b6x5 + b7x6 + b8x7

 E(Yt) = b0 + b1t + b2x1 + b3x2 + b4x3

(x1, x2, Á , x11)

The MINITAB regression printout for the model
is shown in Figure SIA13.6, followed by the model
forecasts in Figure SIA13.7. The global F-test

indicates that the model is statistical-
ly useful for predicting monthly sales, and the model
coefficient of determination indicates that
over 98% of the sample variation in monthly sales can
be explained by the seasonal model. Statistically, this
model is a tremendous improvement over the linear
trend model.

The 95% prediction intervals for sales in months
25, 26, and 27 (highlighted on Figure SIA13.7) are
(4285.8, 6349.2), (4164.8, 6228.2), and (1604.3, 3667.7),
respectively. Thus, for the first month of year 3 (month
25), we are 95% confident that the actual sales will fall
between 4,285.8 and 6,349.2 thousand dollars. (Similar
interpretations are made for the other two forecasts.)
These intervals are much narrower than those for the
previous two forecasting models, and they also reflect
the expected drop in sales in March (month 3) from
the winter months. This seasonal model was used suc-
cessfully by the pharmaceutical firm to forecast
monthly sales.

(R2
= .983)

(p-value = .000)

Forecasting Coldex Sales with a 
Seasonal Regression Model

STATISTICS IN ACTION REVISITED

Figure SIA13.6

MINITAB printout for seasonal regression model of monthly Coldex sales
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Exercises 13.38–13.44
Learning the Mechanics
13.38 The annual price of a finished product (in cents per

pound) from 1991 to 2006 is given in the table below. The
time variable t begins with in 1991 and is increment-
ed by 1 for each additional year.

LM13_38

Year t Price, Year t Price,

1991 1 21.73 1999 9 24.42
1992 2 24.32 2000 10 25.49
1993 3 25.31 2001 11 26.19
1994 4 26.36 2002 12 27.31
1995 5 27.31 2003 13 24.40
1996 6 27.58 2004 14 24.24
1997 7 24.79 2005 15 25.87
1998 8 25.36 2006 16 26.86

a. Fit the straight-line model, to the
data.

b. Give the least squares estimates of the 
c. Use the least squares prediction equation to obtain the

forecasts for 2003 and 2004.
d. Find 95% forecast intervals for 2003 and 2004.

13.39 Retail sales in Quarters 1–4 over a 10-year period for a de-
partment store are shown (in hundreds of thousands of
dollars) in the table below.

LM13_39
QUARTER

Year 1 2 3 4

1 8.3 10.3 8.7 13.5
2 9.8 12.1 10.1 15.4
3 12.1 14.5 12.7 17.1
4 13.7 16.0 14.2 19.2
5 17.4 19.7 18.0 23.1
6 18.2 20.5 18.6 24.0
7 20.0 22.2 20.5 25.1
8 22.3 25.1 22.9 27.7
9 24.7 26.9 25.1 29.8

10 25.8 28.7 26.0 32.2

a. Write a regression model that contains trend and sea-
sonal components to describe the sales data.

b. Use least squares regression to fit the model. Evaluate
the fit of the model.

b’s.

E(Yt) = b0 + b1t,

YtYt

t = 1

c. Use the regression model to forecast the quarterly sales
during year 11. Give 95% prediction intervals for the
forecasts.

13.40 What advantage do regression forecasts have over expo-
nentially smoothed forecasts? Does this advantage ensure
that regression forecasts will prove to be more accurate?
Explain.

Applying the Concepts—Basic
13.41 Mortgage interest rates. The level at which commercial

lending institutions set mortgage interest rates has a sig-
nificant effect on the volume of buying, selling, and con-
struction of residential and commercial real estate. The
data in the table are the annual average mortgage interest
rates for conventional, fixed-rate, 30-year loans for the
period 1980–2004.

INTRATE30

Year Interest Rate (%) Year Interest Rate (%)

1980 14.30 1993 8.09
1981 16.54 1994 8.28
1982 16.83 1995 7.86
1983 13.92 1996 7.76
1984 13.71 1997 7.57
1985 12.91 1998 6.92
1986 11.33 1999 7.46
1987 10.46 2000 8.08
1988 10.86 2001 7.01
1989 12.07 2002 6.56
1990 11.78 2003 5.89
1991 11.14 2004 5.86
1992 9.29

Source: Statistical Abstract of the United States, U.S. Bureau of the Census, 2006.

a. Fit the simple regression model

where t is the number of years since 1980 (i.e.,
).

b. Forecast the average mortgage interest rate in 2007.
Find a 95% prediction interval for this forecast.

NATGAS

13.42 Price of natural gas. Refer to Exercise 13.9 (p. 13-13) and
the annual prices of natural gas from 1990 to 2004.A simple

t = 0, 1, Á , 24

E(Yt) = b0 + b1t

Figure SIA13.7

MINITAB worksheet with seasonal regression forecasts of monthly sales
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linear regression model, where t is the
number of years since 1990, is proposed to forecast the an-
nual price of natural gas.
a. Give the least squares estimates of the and inter-

pret their values.
b. Evaluate the model’s fit.
c. Find and interpret 95% prediction intervals for the

years 2005 and 2006.
d. Describe the problems associated with using a simple

linear regression model to predict time series data.

Applying the Concepts—Intermediate
13.43 Life insurance policies in force. The table below repre-

sents all life insurance policies (in millions) in force on the
lives of U.S. residents for the years 1970 through 2003.

LIFEINS

No. of Policies No. of Policies
Year (in millions) Year (in millions)

1970 355 1987 395
1971 357 1988 391
1972 365 1989 394
1973 369 1990 389
1974 380 1991 375
1975 380 1992 366
1976 382 1993 363
1977 390 1994 371
1978 401 1995 392
1979 407 1996 355
1980 402 1997 351
1981 400 1998 358
1982 390 1999 367
1983 387 2000 369
1984 385 2001 377
1985 386 2002 375
1986 391 2003 370

Source: U.S. Bureau of the Census. Statistical Abstract of the United
States, 2005.

a. Use the method of least squares to fit a simple regres-
sion model to the data.

b. Forecast the number of life insurance policies in force
for 2004 and 2005.

b’s

E(Yt) = b0 + b1t, c. Construct 95% prediction intervals for the forecasts of
part b.

d. Check the accuracy of your forecasts by looking up the
actual number of life insurance policies in force for 2004
and 2005 in the Statistical Abstract of the United States.

13.44 Graphing calculator sales. The next table presents the
quarterly sales index for one brand of graphing calculator
at a campus bookstore.The quarters are based on an acad-
emic year, so the first quarter represents fall; the second,
winter; the third, spring; and the fourth, summer.

Define the time variable as for the first quarter of
2002, for the second quarter of 2002, etc. Consider
the following seasonal dummy variables:

GRAPHICAL

First Second Third Fourth
Year Quarter Quarter Quarter Quarter

2002 438 398 252 160
2003 464 429 376 216
2004 523 496 425 318
2005 593 576 456 398
2006 636 640 526 498

a. Write a regression model for as a function of
and 

b. Find and interpret the least squares estimates, and eval-
uate the usefulness of the model.

c. Which of the assumptions about the random error
component is in doubt when a regression model is fit to
time series data?

d. Find the forecasts and the 95% prediction intervals for
the 2007 quarterly sales. Interpret the result.

Q3.t, Q1, Q2,
E(Yt)

 Q3 = b1 if Quarter 3
0 otherwise

 Q2 = b1 if Quarter 2
0 otherwise

 Q1 = b1 if Quarter 1
0 otherwise

t = 2
t = 1

13.9 Autocorrelation and the Durbin-Watson Test

Recall that one of the assumptions we make when using a regression model for predic-
tions is that the errors are independent. However, with time series data, this assump-
tion is questionable. The cyclical component of a time series may result in deviations
from the secular trend that tend to cluster alternately on the positive and negative
sides of the trend, as shown in Figure 13.18.

The observed errors between the time series and the regression model for the sec-
ular trend (and seasonal component, if present) are called time series residuals. Thus, if
the time series has an estimated trend of then the time series residual* is

RN t = Yt - YNt

YNt,Yt

*We use rather than to denote a time series residual because, as we shall see, time series residuals often
do not satisfy the regression assumptions associated with the random component P.

P
NRN t
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Note that time series residuals are defined just as the residuals for any regression
model. However, we will usually plot time series residuals versus time to determine
whether a cyclical component is apparent.

For example, consider the sales forecasting data in Table 13.7, to which we fit
a simple straight-line regression model. The MINITAB plot of the data and model
is repeated in Figure 13.19, and a plot of the time series residuals is shown in
Figure 13.20.

Notice the tendency of the residuals to group alternately into positive and
negative clusters—that is, if the residual for year t is positive, there is a tendency for
the residual for year to be positive. These cycles are indicative of possible
positive correlation between neighboring residuals. The correlation between time
series residuals at different points in time is called autocorrelation, and the auto-
correlation of neighboring residuals (time periods t and ) is called first-order
autocorrelation.

t + 1

(t + 1)

13-45SECTION 13.9 Autocorrelation and the Durbin-Watson Test

FIGURE 13.19

MINITAB scatterplot of annual sales data

Definition 13.5
The correlation between time series residuals at different points in time is called
autocorrelation. Correlation between neighboring residuals (at times t and ) is
called first-order autocorrelation. In general, correlation between residuals at times
t and is called dth-order autocorrelation.t + d

t + 1

Rather than speculate about the presence of autocorrelation among time series
residuals, we prefer to test for it. For most business and economic time series, the rele-
vant test is for first-order autocorrelation. Other higher-order autocorrelations may
indicate seasonality (e.g., fourth-order autocorrelation in a quarterly time series). How-
ever, when we use the term autocorrelation in this text, we are referring to first-order
autocorrelation unless otherwise specified. So, we test

The Durbin-Watson d-statistic is used to test for the presence of first-order auto-
correlation. The statistic is given by the formula

d =

a
n

t = 2
(RN t - RN t - 1)

2

a
n

t = 1
RN t

2

Ha: Positive first-order autocorrelation of residuals

H0: No first-order autocorrelation of residuals

FIGURE 13.20

MINITAB plot of residuals versus time for straight-
line model of annual sales

Yt

t

Secular trend

FIGURE 13.18

Illustration of cyclical errors
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Cambridge in the late 1940s, Watson collabo-
rated with James Durbin of the London
School of Economics to develop their well-
known Durbin-Watson test for serial correla-
tion. His research interests covered a wide
spectrum of statistical applications all across
the world, including estimating the size of the
penguin population (Antarctica), paleontol-
ogy problems (Sweden), probability in quan-
tum mechanics (Rome), molecular biology
(Italy), and ozone depletion (U.S. Energy In-
formation Administration). Outside his pro-
fessional life, Watson was a serious painter
(landscapes and hills) and an accomplished
tennis player (effective lob).

where n is the number of observations (time periods) and represents the
difference between a pair of successive time series residuals. The value of d always falls
in the interval from 0 to 4. The interpretations of the values of d are given in the box.
Most statistical software packages include a routine that calculates d for time series
residuals.

(RN t - RN t - 1)

Interpretation of Durbin-Watson d-Statistic

1. If the residuals are uncorrelated, then 

2. If the residuals are positively autocorrelated, then and if the autocorrela-
tion is very strong,

3. If the residuals are negatively autocorrelated, then and if the autocorre-
lation is very strong, d L 4.

d 7 2,

d L 0.
d 6 2,

d L 2.

d =

a
n

t = 2
(RN t - RN t - 1)

2

a
n

t = 1
RN t

2
 Range of d: 0 … d … 4

Durbin and Watson (1951) give tables for the lower-tail values of the d-statistic,
which are shown in Tables XII and XIII of Appendix B. Part of
Table XII is reproduced in Table 13.10. For the sales example, we have indepen-
dent variable and observations. Using for the one-tailed test for positive
autocorrelation, we obtain the tabled values and The meaning of
these values is illustrated in Figure 13.21. Because of the complexity of the sampling dis-
tribution of d, it is not possible to specify a single point that acts as a boundary between
the rejection and nonrejection regions, as we did for the z, t, F, and other test statistics.
Instead, an upper and lower bound are specified. Thus a d-value less than 
does provide strong evidence of positive autocorrelation at (recall that small d
values indicate positive autocorrelation); a d value greater than does not provide ev-
idence of positive autocorrelation at and a value of d between and might
or might not be significant at the level. If more information is
needed before we can reach any conclusion about the presence of autocorrelation.

Tests for negative autocorrelation and two-tailed tests can be conducted by mak-
ing use of the symmetry of the sampling distribution of the d-statistic about its mean.
The test procedure is summarized in the next box.

dL 6 d 6 dU,a = .05
dUdLa = .05;

dU

a = .05
dL(dL)(dU)

dU = 1.52.dL = 1.40
a = .05n = 35

k = 1
(a = .01)(a = .05)
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13-47SECTION 13.9 Autocorrelation and the Durbin-Watson Test

TABLE 13.10 Reproduction of Part of Table XII of Appendix B: Critical Values for
the Durbin-Watson d-Statistic,

n

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

dUdLdUdLdUdLdUdLdUdL

k � 5k = 4k � 3k � 2k � 1

A � .05

d
43210 1.40 1.52

Rejection region:
evidence at α = .05
of positive
autocorrelation

Nonrejection region:
insufficient evidence
at α = .05 of positive
autocorrelation

Possibly significant
autocorrelation

FIGURE 13.21

Rejection region for the
Durbin-Watson d test: Sales
example

Durbin-Watson d-Test for Autocorrelation

One-Tailed Test Two-Tailed Test

No first-order autocorrelation No first-order autocorrelation
Positive first-order autocorrelation Positive or negative first-order 
(or Negative first-order autocorrelation
autocorrelation)

Test statistic:

Rejection region: Rejection region:

or 
[or 
if Negative first-order autocorrelation]

where is the lower tabled value where is the lower tabled value 
corresponding to k independent variables and corresponding to k independent variables 
n observations. The corresponding upper value and n observations. The corresponding

defines a “possibly significant” region upper value defines a “possibly 
between and (see Figure 13.21). significant” region between and

(see Figure 13.21).dU,a/2

dL,a/2dU,adL,a

dU,a/2dU,a

dL,a/2dL,a

Ha:
(4 - d) 6 dL,a

(4 - d) 6 dL,a/2d 6 dL,a/2d 6 dL,a

d =

a
n

t = 2
(RN t - RN t - 1)

2

a
n

t = 1
RN t

2

Ha:
Ha:Ha:
H0:H0:

MCCL9356_10_13.qxd  1/3/07  12:37 PM  Page 13-47



Chapter 13 Time Series13-48

FIGURE 13.22

Excel printout with Durbin-
Watson statistics for annual
sales model

Requirements for the Validity of the d-Test

The residuals are normally distributed.

A portion of the Excel printout for the regression of annual sales is presented in
Figure 13.22. It shows that the computed value of d is .821 (highlighted), which is less
than the tabulated value of for Thus, we conclude that the residuals
of the straight-line model for sales are positively autocorrelated.

a = .05.dL = 1.40

Now Work Exercise 13.47

Once strong evidence of first-order autocorrelation has been established, as in
the case of the sales example, doubt is cast on the least squares results and any infer-
ences drawn from them. Under these circumstances, a time series model that accounts
for the autocorrelation of the random errors is needed. A useful model is the first-
order autoregressive model. Consult the references at the end of the book.

Exercises 13.45–13.54
Learning the Mechanics
13.45 Define autocorrelation. Explain why it is important in

time series modeling and forecasting.
13.46 What do the following Durbin-Watson statistics suggest

about the autocorrelation of the time series residuals from
which each was calculated?
a.
b.
c.

13.47 For each case, indicate the decision regarding the test of
the null hypothesis of no first-order autocorrelation
against the alternative hypothesis of positive first-order
autocorrelation.
a.
b.
c.
d.

Applying the Concepts—Basic
13.48 Forecasting monthly car and truck sales. Forecasts of auto-

motive vehicle sales in the United States provide the basis
for financial and strategic planning of large automotive
corporations. The following forecasting model was devel-
oped for total monthly passenger car and light truck
sales (in thousands):

Yt,

k = 1, n = 31, a = .01, d = 1.35
k = 5, n = 65, a = .05, d = .95
k = 2, n = 20, a = .01, d = 1.1
k = 2, n = 20, a = .05, d = 1.1

d = 1.99
d = .2
d = 3.9

where monthly retail price of regular gaso-
line, percentage change in GDP per quarter,

consumer confidence index,
number of vehicles scrapped (millions) per month, and

seasonality.The model was fit to monthly data
collected over a 12-year period (i.e., ), with
the following results: Durbin-Watson 
a. Is there sufficient evidence to indicate that the overall

model contributes information for the prediction of
monthly passenger car and light truck sales? Test using

b. Is there sufficient evidence to indicate that the re-
gression errors are positively correlated? Test using

c. Comment on the validity of the inference concerning
model adequacy in light of the result of part b.

13.49 Modeling the deposit share of a retail bank. Exploratory
research published in the Journal of Professional Services
Marketing (Vol. 5, 1990) examined the relationship be-
tween deposit share of a retail bank and several marketing
variables. Quarterly deposit share data were collected for
5 consecutive years for each of nine retail banking institu-
tions. The model analyzed took the following form:

E(Yt) = b0 + b1Pt - 1 + b2St - 1 + b3Dt - 1

a = .05.

a = .05.

d = 1.01.R2
= .856,

n = 144 months
x5 = vehicle

x4 = totalx3 = monthly
x2 = annual

x1 = average

E(Yt) = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5
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13-49SECTION 13.9 Autocorrelation and the Durbin-Watson Test

Plot of regression residuals for Exercise 13.50

MINITAB Output for Exercise 13.50

where share of a bank in quarter
on promotion-

related activities in quarter on
service-related activities in quarter and

on distribution-related activities in
quarter A separate model was fit for each bank with
the results shown in the table.

p-Value for 
Bank Global F -Test Durbin-Watson d

1 .914 .000 1.3
2 .721 .004 3.4
3 .926 .000 2.7
4 .827 .000 1.9
5 .270 .155 .85
6 .616 .012 1.8
7 .962 .000 2.5
8 .495 .014 2.3
9 .500 .011 1.1

a. Interpret the values of for each bank.
b. Test the overall adequacy of the model for each bank

using 
c. Conduct the Durbin-Watson d-test for positive residual

correlation for each bank at What conclusions
do you draw about autocorrelation?

13.50 The consumer purchasing value of the dollar, from
1970 to 2004 is illustrated by the data in the next table.The
buying power of the dollar (compared with 1982) is listed
for each year. The first-order model

was fit to the data using the method of least squares. The
MINITAB printout and a plot of the regression residuals
are shown below.
a. Examine the plot of the regression residuals against t.

Is there a tendency for the residuals to have long posi-
tive and negative runs? To what do you attribute this
phenomenon?

b. Locate the Durbin-Watson d-statistic on the printout
and test the null hypothesis that the time series residu-
als are uncorrelated. Use 

c. What assumption(s) must be satisfied in order for the
test of part b to be valid?

a = .10.

Yt = b0 + b1t + P

Yt,

a = .01.

a = .01.

R2

R2

t - 1.
Dt - 1 = expenditures

t - 1,
t - 1, St - 1 = expenditures

t(t = 1, 2, Á , 20), Pt - 1 = expenditures
Yt = deposit BUYPOWER

Year t Value, Year t Value,

1970 1 2.545 1988 19 0.926
1971 2 2.469 1989 20 0.880
1972 3 2.392 1990 21 0.839
1973 4 2.193 1991 22 0.822
1974 5 1.901 1992 23 0.812
1975 6 1.718 1993 24 0.802
1976 7 1.645 1994 25 0.797
1977 8 1.546 1995 26 0.782
1978 9 1.433 1996 27 0.762
1979 10 1.289 1997 28 0.759
1980 11 1.136 1998 29 0.765
1981 12 1.041 1999 30 0.752
1982 13 1.000 2000 31 0.725
1983 14 0.984 2001 32 0.711
1984 15 0.964 2002 33 0.720
1985 16 0.955 2003 34 0.698
1986 17 0.969 2004 35 0.673
1987 18 0.949

Source: Statistical Abstract of the United States, 2006.

Applying the Concepts—Intermediate

INTRATE30
13.51 Mortgage interest rates. Refer to the data on annual

mortgage interest rate Exercise 13.41 (p. 13-43). You
fit the simple linear regression model,
to the data for the years 1980 to 2004 
a. Find and plot the regression residuals against t. Does the

plot suggest the presence of autocorrelation? Explain.
b. Conduct the Durbin-Watson test (at ) to test

formally for the presence of positively autocorrelated
regression errors.

c. Comment on the validity of the inference concerning
model adequacy in light of the result of part b.

a = .05

(t = 1, 2, Á , 25).
E(Yt) = b0 + b1t,

(Yt),

YtYt
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NATGAS

13.52 Price of natural gas. Refer to the annual data on natural
gas price , Exercise 13.42 (p. 13-44). You fit the simple
linear regression model, to the data for
the years 1990 to 2004 
a. Find and plot the regression residuals against t. Does the

plot suggest the presence of autocorrelation? Explain.
b. Conduct the Durbin-Watson test (at ) to test

formally for the presence of positively autocorrelated
regression errors.

c. Comment on the validity of the inference concerning
model adequacy in light of the result of part b.

13.53 Forecasting foreign exchange rates. T. C. Chiang consid-
ered several time series forecasting models of future for-
eign exchange rates for U.S. currency (The Journal of
Financial Research, Summer 1986). One popular theory
among financial analysts is that the forward (90-day) ex-
change rate is a useful predictor of the future spot ex-
change rate. Using monthly data on exchange rates for the
British pound for Chiang fit the model

where in month t,
and in month The analysis
yielded the following results:

t - 1.xt - 1 = ln(forward rate)
Yt = ln(spot rate)E(Yt) = b0 + b1xt - 1,

n = 81 months,

a = .05

(t = 1, 2, Á , 14).
E(Yt) = b0 + b1t,

(Yt) a. Is the model statistically useful for forecasting future spot
exchange rates for the British pound? Test using 

b. Interpret the values of s and 
c. Is there evidence of positive autocorrelation among the

residuals? Test using 
d. Based on the results of parts a–c, would you recom-

mend using the model to forecast spot exchange rates?

LIFEINS

13.54 Life insurance policies in force. Refer to the annual data
on number of life insurance policies in force Exercise
13.43 (p. 13-44).You fit the simple linear regression model,

to the data for the years 1970 to 2003

a. Find and plot the regression residuals against t. Does the
plot suggest the presence of autocorrelation? Explain.

b. Conduct the Durbin-Watson test (at ) to test
formally for the presence of positively autocorrelated
regression errors.

c. Comment on the validity of the inference concerning
model adequacy in light of the result of part b.

a = .05

(t = 1, 2, Á , 34).
E(Yt) = b0 + b1t,

(Yt),

a = .05.

R2.
a = .05.

Durbin-Watson d = .962
t-value = 47.9, s = .025, R2

= .957,

KEY TERMS
Note: Starred (*) items are from the optional
section in this chapter.

Adaptive forecast 13-21
Additive model 13-20
Autocorrelation 13-45
Base period 13-4
Composite index number 13-6
Cyclical effect 13-20
Double exponential smoothing* 13-24
Durbin-Watson d-statistic 13-45
Durbin-Watson test 13-47

Exponentially smoothed forecast 13-21
Exponential smoothing 13-15
Exponential smoothing constant 13-15
First-order autocorrelation 13-45
Forecast error 13-22
Holt-Winters forecasting model* 13-24
Index number 13-4
Inferential forecasting model 13-34
Laspeyres index 13-9
Long-term trend 13-20
Mean absolute deviation 13-29
Mean absolute percentage error 13-29

Multiplicative model 13-40
Paasche index 13-10
Residual effect 13-20
Root mean squared error 13-29
Seasonal effect 13-20
Seasonal model 13-38
Secular trend 13-20
Simple composite index number 13-7
Simple index number 13-5
Time series 13-3
Time series residuals 13-44
Weighted composite price index 13-8

GUIDE TO TIME SERIES ANALYSIS

Type of Analysis

Index Numbers:

Simple

Simple Composite

Weighted Composite

Descriptive ForecastingForecasting

Predictor VariablesExponential Smoothing

Past values of Yt
Independent variables,

X1t, X2t, Á , Xkt

Past values of 
Trend

Yt

Exponential
Smoothing

Least Squares
Regression Models

Holt-Winters
Model
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CHAPTER NOTES

Key Formulas

Simple index

Simple composite index

Weighted composite price indexes:

Laspeyres

Paasche

Exponential smoothing:

Note:

Forecast:

Holt-Winters model

Note:

Forecast:

Mean absolute deviation 

Mean absolute percentage error 

Root mean square error 

Durbin-Watson test statisticd =

a
n

t = 2
(RN t - RN t - 1)

2

a
n

t = 1
RN t

2

RMSE = Qa
m

t = 1
(Yt - Ft)

2

m

MAPE =

a
m

t = 1
` Yt - Ft

Yt
`

m
* 100

MAD =

a
m

t = 1
ƒ Yt - Ft ƒ

m

Ft + k = Et + kTt

Tt = v(Et - Et - 1) + (1 - v)Tt - 1

E2 = Y2, T2 = Y2 - Y1

Et = wYt + (1 - w)(Et - 1 + Tt - 1)

*:

Ft + k = Et

E1 = Y1

Et = wYt + (1 - w)Et - 1

It = § aki = 1
QitPit

a
k

i = 1
QitPit0

¥100

It = § aki = 1
Qit0

Pit

a
k

i = 1
Qit0

Pit0

¥100

It = ¢ Total of all Y-values at time t
Total of all Y-values at time t0

≤100

It = ¢Yt

Y0
≤100

Time Series Data
Data generated by processes over time.

Index Number
Measures the change in a variable over time relative to a
base period.

Types of index numbers: (1) simple index number,
(2) simple composite index number, and (3) weighted
composite number.

Types of weighted composite index numbers:
(1) Laspeyres index and (2) Paasche index.
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Measures of forecast accuracy: (1) mean absolute devia-
tion (MAD), (2) mean absolute percentage error
(MAPE), and (3) root mean squared error (RMSE).

An inferential forecasting method: least squares regression.

Problems with least squares regression forecasting:
(1) prediction outside the experimental region and (2) re-
gression errors are autocorrelated.

SUPPLEMENTARY EXERCISES 13.55–13.68

Applying the Concepts—Basic

13.55 Average prices of steel. The U.S. steel industry prices (in
cents per pound) of three varieties of steel sheets are
given in the table for selected years from 1995 to 2004.

STEEL3

Year Cold Finished Hot Rolled Galvanized

1995 25.70 25.32 34.47
2000 23.08 15.67 21.38
2001 22.76 11.71 16.41
2002 23.26 16.46 22.00
2003 25.15 14.80 20.08
2004 38.67 30.84 36.69

Sources: Standard & Poor’s Statistics: Metals, 2005, The CRB Community
Yearbook, 2005.

a. Calculate a simple composite index for the three steel
price series using 1995 as the base period. Interpret the
results.

b. Is the index a price index or a quantity index?

c. What information would you need in order to calculate
a Laspeyres index with a base period of 1995? A Paasche
index with a base period of 1995?

13.56 Average prices of steel (cont’d). Refer to Exercise 13.55.
a. Compute the exponentially smoothed series corre-

sponding to each of the price series using the smoothing
constant 

b. Plot the prices and their exponentially smoothed series
on the same graph.

c. Find the exponential smoothing forecasts of 2005 prices
of the three varieties of steel. What are the drawbacks to
these forecasts?

13.57 Demand for emergency room services. With the advent of
managed care, U.S. hospitals have begun to operate like
businesses. More than ever before, hospital administrators
need to know and apply the theories and methods taught
in business schools. Richmond Memorial Hospital in
Richmond, Virginia, uses regression analysis to forecast
the demand for emergency room services. Specifically,
Richmond Memorial uses data on patient visits to the
emergency room during each of the past 10 Augusts to

w = .5.

Descriptive methods of forecasting with smoothing:
(1) exponential smoothing and (2) Holt-Winters model.

Time series components: (1) secular (long-term) trend,
(2) cyclical effect, (3) seasonal effect, and (4) residual
effect.

Autocorrelation
Correlation between time series residuals at different
points in time.

A test for first-order autocorrelation: Durbin-Watson test.

Key Symbols

. . . Time series value at time t

. . . Index at time t

. . . Price series at time t

. . . Quantity series at time t

. . . Exponentially smoothed value at time t

. . . Smoothed trend at time t

. . . k-step-ahead forecast value

MAD . . . Mean absolute deviation

MAPE . . . Mean absolute percentage error

RMSE . . . Root mean squared error

. . . Residual at time t

d . . . Value of Durbin-Watson test statistic

. . . Lower critical value of d

. . . Upper critical value of ddU

dL

RN t

Ft + k

Tt

Et

Qt

Pt

It

Yt
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forecast next August’s demand. Data for the month of
August in a recent 10-year period are shown below.

ER

Daily Daily
Year Visits Average Year Visits Average 

1 1,367 44.09 6 3,019 97.38
2 1,642 52.96 7 2,794 90.12
3 1,780 57.41 8 2,846 91.80
4 2,060 66.45 9 3,001 96.80
5 2,257 72.80 10 3,548 114.45

Source: Adapted from Bolling, W. B. “Queuing Model of a Hospital Emergency
Room.” Industrial Engineering, Sept. 1972.

a. Use a straight-line regression model to construct a point
forecast for emergency room demand for each of the
next three Augusts.

b. Provide 95% prediction intervals around the forecasts.
c. Describe the potential dangers associated with using

simple linear regression to forecast demand for emer-
gency room services.

d. Which other method described in this chapter would be
appropriate for forecasting patient visits to the emer-
gency room?

13.58 Retail prices of food items. In 1990, the average weekly
food cost for a suburban family of four was estimated to be
$154.40. The table below presents the retail prices of four
food items for selected years from 1990 to 2004. Assume a
typical suburban family of four purchased the following
quantities of food, on average, each week during 1990:

Spaghetti Ground Beef Eggs Potatoes

2 lb. 5 lb. 1 doz. 10 lb.

FOOD4

Spaghetti Ground Beef Eggs Potatoes 
Year ($/lb.) ($/lb.) ($/doz.) ($/lb.)

1990 .85 1.63 1.00 .32
1995 .88 1.40 1.16 .38
2000 .88 1.63 .96 .35
2004 .95 2.14 .98 .51

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2006.

a. Calculate a Laspeyres price index for 1990 to 2004, using
1990 as the base year.

b. According to your index, how much did the above “bas-
ket” of foods increase or decrease in price from 1990 to
2004?

Applying the Concepts—Intermediate

13.59 Mortgage interest rates. Refer to the annual interest
rate time series, Exercise 13.41 (p. 13-43). Use 
and to compute the Holt-Winters forecasts for
2005–2007. Compare these to the linear regression fore-
casts obtained in Exercise 13.41 using MAD, MAPE,
and RMSE. [Note: You will need to obtain the actual
values of the time series for 2005–2007 to complete this
exercise.]

13.60 Price of Abbott Labs stock. The stock of Abbott
Laboratories has had the yearly closing prices shown in
the next table.

v = .7
w = .3

YttYtt

ABBLAB

Year Closing Price Year Closing Price

1980 56.50 1994 32.05
1981 27.00 1995 41.05
1982 38.75 1996 50.75
1983 45.25 1997 65.50
1984 41.75 1998 49.00
1985 68.37 1999 36.31
1986 45.62 2000 48.44
1987 48.02 2001 55.75
1988 48.01 2002 40.00
1989 64.03 2003 46.60
1990 45.00 2004 46.65
1991 68.07 2005 39.43
1992 30.03 2006 43.80
1993 29.05

Sources: Standard & Poor’s. NYSE Daily Stock Price Record, 1980–2006.

a. Use exponential smoothing with to forecast the
2007 and 2008 closing prices. If you buy at the end of
2006 and sell at the end of 2008, what is your expected
gain (loss)?

b. Repeat part a using the Holt-Winters model with 
and 

c. In which forecast do you have more confidence?
Explain.

13.61 Price of Abbott Labs stock (cont’d). Refer to Exercise
13.60.

a. Fit a simple linear regression model to the stock price data.
b. Plot the fitted regression line on a scattergram of the data.
c. Forecast the 2007 and 2008 closing prices using the re-

gression model.
d. Construct 95% prediction intervals for the forecasts of

part c. Interpret the intervals in the context of the
problem.

e. Obtain the time series residuals for the simple linear
model, and use the Durbin-Watson d-statistic to test for
the presence of autocorrelation.

13.62 Assets of retirement mutual funds. Annual mutual fund
retirement assets (in billions of dollars) for two fund types
are given in the table below.

a. Compute simple indexes for each of the two time series
using 1990 as the base period.

b. Construct a time series plot that displays both indexes.
c. Using the results of parts a and b, compare and contrast

the two types of funds.

FUND2

Year IRA 401(K)

1990 140 35
1994 350 184
1995 476 266
1996 598 346
1997 767 466
1998 960 616
1999 1,234 810
2000 1,232 815
2001 1,161 794
2002 1,034 706
2003 1,307 919
2004 1,490 1,086

Source: U.S. Census Bureau. Statistical Abstract of the United States, 2006.

v = .5.
w = .8

w = .8
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13.63 Quarterly GDP values. The gross domestic product
(GDP) is the total U.S. output of goods and services
valued at market prices. The quarterly GDP values (in
billions of dollars) for the period 2001–2005 are given in
the accompanying table. Using weights and

calculate Holt-Winters forecasts for the four
quarters of 2006.

QTRGDP

Year Quarter GDP Year Quarter GDP

2001 I 9876 2004 I 10,612
II 9906 II 10,704
III 9871 III 10,809
IV 9910 IV 10,897

2002 I 9977 2005 I 10,999
II 10,032 II 11,089
III 10,091 III 11,202
IV 10,096 IV 11,248

2003 I 10,139
II 10,230
III 10,411
IV 10,503

Source: Standard & Poor’s Statistical Service: Current Statistics, 2006;
www.bea.gov.

13.64 Quarterly GDP values (cont’d). Refer to Exercise 13.63.
a. Use the simple linear regression model fit to the

2001–2005 data to forecast the 2006 quarterly GDP.
Place 95% prediction limits on the forecasts.

b. The GDP values given are seasonally adjusted, which
means that an attempt to remove seasonality has been
made prior to reporting the figures. Add quarterly
dummy variables to the model. Use the partial F-test
(discussed in Section 11.9) to determine whether the
data indicate the significance of the seasonal compo-
nent. Does the test support the assertion that the GDP
figures are seasonally adjusted?

c. Use the seasonal model to forecast the 2006 quarterly
GDP values.

d. Calculate the time series residuals for the seasonal
model, and use the Durbin-Watson test to determine
whether the residuals are autocorrelated. Use 

13.65 Quarterly GDP values (cont’d). Refer to Exercises 13.63
and 13.64. For each of the forecasting models, apply the
MAD, MAPE, and RMSE criteria to evaluate the fore-
casts for the four quarters of 2006. Which of the forecast-
ing models performs best according to each criterion?
(You will need to obtain the actual 2006 GDP values to
complete this exercise.)

13.66 Revolving credit loans. A major portion of total consumer
credit extended is in the category of revolving credit loans.
Amounts outstanding (in billions of dollars) for the period
1980–2004 are given in the next table.

a. Use a simple linear regression model to forecast the
2006 and 2007 values. Place 95% prediction limits on
each forecast.

b. Calculate the Holt-Winters forecasts for 2006 and 2007
using and Compare the results with the
simple linear regression forecasts of part a.

13.67 Using the CPI to compute real income. The number of dol-
lars a person receives in a year is referred to as his or her
monetary (or money) income. This figure can be adjusted to

v = .7.w = .7

a = .10.

v = .5,
w = .5

reflect the purchasing power of the dollars received rela-
tive to the purchasing power of dollars in some base period.
The result is called a person’s real income. The Consumer
Price Index (CPI) can be used to adjust monetary income
to obtain real income (in terms of 1984 dollars). To com-
pute your real income for a specific year, simply divide
your monetary income for that year by that year’s CPI and
multiply by 100. In Exercise 13.27 (p. 13-28), we listed the
CPI for 1990 and 2005 as 125.8 and 195.3, respectively.

a. Suppose your monetary income increased from $50,000
in 1990 to $95,000 in 2005. What were your real incomes
in 1990 and 2005? Were you able to buy more goods and
services in 1990 or 2005? Explain.

b. What monetary income would have been required in
2005 to provide equivalent purchasing power to a 1990
monetary income of $20,000?

HITECH

13.68 IBM stock prices. Refer to Example 13.4 (p. 13-16), and
the monthly IBM stock prices from January 2004 to
December 2005. The data are saved in the HITECH file.

a. Use the exponentially smoothed series (with )
from January 2004 to September 2005 to forecast the
monthly values of the IBM stock price from October to
December 2005. Calculate the forecast errors.

b. Use a simple linear regression model fit to the IBM
stock prices from January 2004 to September 2005. Let
time t range from 1 to 21, representing the 21 months
in the sample. Interpret the least squares estimates.

c. With what approximate precision do you expect to be able
to predict the IBM stock price using the regression model?

d. Give the simple linear regression forecasts and the 95%
forecast intervals for the October-December 2005 prices.
How does the precision of these forecasts agree with the
approximation obtained in part c?

e. Compare the exponential smoothing forecasts, part a, to
the regression forecasts, part d, using MAD, MAPE, and
RMSE.

f. What assumptions does the random error component of
the regression model have to satisfy in order to make the
model inferences (such as the forecast intervals in
part c) valid?

g. Test to determine whether there is evidence of first-
order positive autocorrelation in the random error com-
ponent of the regression model. Use What can
you infer about the validity of the model inferences?

a = .05.

w = .5

LOANS (for Exercise 13.66)

Year Revolving Year Revolving Year Revolving

1980 55 1991 245 2002 738
1981 61 1992 257 2003 759
1982 66 1993 288 2004 794
1983 79 1994 338
1984 100 1995 443
1985 122 1996 499
1986 136 1997 530
1987 153 1998 579
1988 174 1999 608
1989 198 2000 678
1990 239 2001 722

Source: U.S. Bureau of the Census. Statistical Abstract of the United States, 2006.
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Using Technology

13.1 Forecasting Using SPSS
To produce forecasts using exponential

smoothing or the Holt-Winters method,
click the “Analyze” button on

the SPSS main menu
bar, then click on “Time
Series”, and then click on

“Exponential Smoothing”, as shown in Figure 13.S.1.
The resulting dialog box is shown in Figure 13.S.2.

Select the quantitative variable to be smoothed
and place it in the “Variables” box. For exponential
smoothing, select “Simple” in the “Model” box. For
the Holt-Winters method, select “Holt” in the “Model”
box. To set the value of the smoothing constants, click Figure 13.S.1

SPSS options for exponential smoothing
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the “Parameters” button and make your selections on the resulting menu screen, as shown in Figure 13.S.3. Click
“Continue” to return to the “Exponential Smoothing” dialog box, then click “OK” to view the results. [Note: Forecasts
for each time period in the data set will show up in a column on the SPSS spreadsheet screen.]

Figure 13.S.3

Selecting exponential
smoothing parameters

To produce forecasts using a regression model, click the “Analyze” button on the SPSS main menu bar, then click on
“Regression” and “Linear”. The resulting dialog box is shown in Figure 13.S.4.

Figure 13.S.4

SPSS linear regression dialog
box

Figure 13.S.2

SPSS exponential smoothing
dialog box
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Figure 13.M.1

MINITAB options for time series analysis

Specify the dependent time series variable in the “Dependent” box and the independent variables in the model in the
“Independent(s)” box. Click “Save” and make the appropriate menu selections to save the forecasted values as well as
95% prediction intervals. To conduct the Durbin-Watson test for autocorrelated errors, click on the “Statistics” button to
obtain the menu shown in Figure 13.S.5. Check the “Durbin-Watson” box, then click “Continue” to return to the “Linear
Regression” dialog box. Click “OK” to view the results.

13.2 Forecasting Using MINITAB
To produce forecasts using exponential smoothing or the Holt-Winters method, click the “Stat” button on the MINITAB
main menu bar, then click on “Time Series”. This will produce the menu list shown in Figure 13.M.1.

Figure 13.S.5

SPSS linear regression
statistics menu
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Figure 13.M.2

MINITAB exponential smoothing dialog box

Click on “Single Exp Smoothing” for the exponen-
tial smoothing method or “Double Exp Smoothing”
for the Holt-Winter’s method with trend. For example,
clicking “Single Exp Smoothing” will result in the dia-
log box shown in Figure 13.M.2.

Select the quantitative variable to be smoothed and
place it in the “Variable” box and set the value of the
smoothing constant in the “Weight to use in smoothing”
box. Select the “Options” box and specify “1” where
MINITAB asks for the number of observations to use
for the initial smoothed value. As an option, you can
store the forecast values by selecting “Storage” and
making the appropriate selections. Click “OK” to view
the results.

To produce forecasts using a regression model, click
the “Stat” button on the MINITAB main menu bar, then
click on “Regression” and “Regression” again. The re-
sulting dialog box is shown in Figure 13.M.3.

Specify the dependent time series variable in the
“Response” box and the independent variables in the
model in the “Predictors” box. Click “Options” to dis-
play the Regression Options dialog box. As shown in
Figure 13.M.4, you may select “Durbin-Watson statistic”
to conduct a test for autocorrelated errors and/or make
selections for producing a prediction interval for a fu-
ture value of the time series variable. Click “Storage”
and make the appropriate menu selections to save the
forecasted values as well as 95% prediction intervals.
(These values will appear on the MINITAB worksheet.)
When all selections have been made, click “OK” on the
Linear Regression dialog box to produce the forecasts.

Figure 13.M.3

MINITAB linear regression dialog box

Figure 13.M.4

MINITAB regression options
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13.3 Forecasting Using Excel
To produce forecasts using exponential smoothing, click on the “Tools” button on the Excel main menu bar, then click on
“Data Analysis”. Select “Exponential Smoothing” from the resulting menu list, as shown in Figure 13.E.1. Click “OK” to
display the Excel Exponential Smoothing dialog box as shown in Figure 13.E.2.

Specify the input range of the quantitative variable to be smoothed, the smoothing constant (“damping factor”), and
the output range for where the smoothed values will appear on the Excel worksheet. As an option, you can check “Chart
Output” to produce a plot of the smoothed series. Click “OK” to view the results. [Note: The Holt-Winters forecasting
method is not currently available in Excel.]

To produce forecasts using a regression model, click the “PHStat” button on the Excel main menu bar, then click on
“Regression” and either “Simple Linear Regression” or “Multiple Regression”. The resulting dialog box is similar to the
one shown in Figure 13.E.3.

Specify the cell range for the dependent (y) time series variable and the cell range for the independent (x) variable(s).
Check the “Durbin-Watson Statistic” option to conduct a test for autocorrelated errors and/or make selections for pro-
ducing a prediction interval for a future value of the time series variable. Click “OK” to produce the regression results and
forecasts.

Figure 13.E.1

Excel data analysis options

Figure 13.E.2

Excel exponential smoothing dialog box

Figure 13.E.3

Excel linear regression dialog
box
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FIGURE C5.2

Roll mill for the manufacture of soft gasket
material

Real-World Case
The Gasket Manufacturing Case
(A Case Covering Chapters 12 and 13)

The Problem
A Midwestern man-

ufacturer of gaskets
for automotive
and off-road ve-
hicle applications
was suddenly and

unexpectedly noti-
fied by a major cus-

tomer—a U.S. auto
manufacturer—that

they had significantly
tightened the specification

limits on the overall thickness of a hard gasket used in their
automotive engines. Although the current specification
limits were by and large being met by the gasket manufac-
turer, their product did not come close to meeting the new
specification.

The gasket manufacturer’s first reaction was to ne-
gotiate with the customer to obtain a relaxation of the new
specification. When these efforts failed, the customer-sup-
plier relationship became somewhat strained. The gasket
manufacturer’s next thought was that if they waited long
enough, the automotive company would eventually be
forced to loosen the requirements and purchase the exist-
ing product. However, as time went on, it became clear that
this was not going to happen and that some positive steps
would have to be taken to improve the quality of their gas-
kets. But what should be done? And by whom?

The Product
Figure C5.1 shows the product in question, a hard gasket.A
hard gasket is comprised of two outer layers of soft gasket
material and an inner layer consisting of a perforated piece
of sheet metal.These three pieces are assembled, and some
blanking and punching operations follow, after which
metal rings are installed around the inside of the cylinder
bore clearance holes and the entire outside periphery of
the gasket. The quality characteristic of interest in this case
is the assembly thickness.

The Process
An initial study by the staff engineers revealed that the
variation in the thickness of soft gasket material—the two
outer layers of the hard gasket—was large and undoubted-

ly responsible for much of the total variability in the final
product. Figure C5.2 shows the roll mill process that fabri-
cates the sheets of soft gasket material from which the two
outer layers of the hard gasket are made. To manufacture a
sheet of soft gasket material, an operator adds raw materi-
al, in a soft pelletlike form, to the gap—called the knip—
between the two rolls. The larger roll rotates about its axis
with no lateral movement; the smaller roll rotates and
moves back and forth laterally to change the size of the
knip. As the operator adds more and more material to the
knip, the sheet is formed around the larger roll. When the
smaller roll reaches a preset destination (i.e., final
gap/sheet thickness), a bell rings and a red light goes on,
telling the operator to stop adding raw material. The oper-
ator stops the rolls and cuts the sheet horizontally along
the larger roll so that it may be pulled off the roll. The fin-
ished sheet, called a pull, is pulled onto a table where the
operator checks its thickness with a micrometer. The oper-
ator can adjust the final gap if he or she believes that the
sheets are coming out too thick or too thin relative to the
prescribed nominal value (i.e., the target thickness).

Process Operation
Investigation revealed that the operator runs the process in
the following way. After each sheet is made, the operator
measures the thickness with a micrometer. The thickness
values for three consecutive sheets are averaged and the
average is plotted on a piece of graph paper that, at the
start of the shift, has only a solid horizontal line drawn on it
to indicate the target thickness value for the particular soft
gasket sheet the operator is making. Periodically, the oper-
ator reviews these evolving data and makes a decision as to
whether or not the process mean—the sheet thickness—
needs to be adjusted.This can be accomplished by stopping
the machine, loosening some clamps on the small roll, and
jogging the small roll laterally in or out by a few thou-
sandths of an inch—whatever the operator feels is needed.
The clamps are tightened, the gap is checked with a taper
gauge, and if adjusted properly, the operator begins to
make sheets again. Typically, this adjustment process takes

Raw material

Gap Roll mill A + B
Thickness

–

Finished sheet

FIGURE C5.1

A hard gasket for
automotive applications
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10 to 15 minutes. The questions of when to make such ad-
justments and how much to change the roll gap for each
adjustment are completely at the operator’s discretion,
based on the evolving plot of thickness averages.

Figure C5.3 shows a series of plots that detail the his-
tory of one particular work shift over which the operator
made several process adjustments. (These data come from
the same shift that the staff engineers used to collect data
for a process capability study that is described later.)
Figure C5.3(a) shows the process data after the first 12
sheets have been made—four averages of three successive
sheet thicknesses. At this point the operator judged that
the data were telling her that the process was running
below the target, so she stopped the process and made an
adjustment to slightly increase the final roll gap. She then
proceeded to make more sheets. Figure C5.3(b) shows the
state of the process somewhat later. Now it appeared to the
operator that the sheets were coming out too thick, so she
stopped and made another adjustment. As shown in Figure
C5.3(c), the process seemed to run well for a while, but
then an average somewhat below the target led the opera-
tor to believe that another adjustment was necessary.
Figures C5.3(d) and C5.3(e) show points in time where
other adjustments were made.

Figure C5.3(f) shows the complete history of the
shift. A total of or 72, sheets were made during this
shift. When asked, the operator indicated that the history
of this shift was quite typical of what happens on a day-to-
day basis.

24 * 3,

The Company’s Stop-Gap Solution
While the staff engineers were studying the problem to for-
mulate an appropriate action plan, something had to be
done to make it possible to deliver hard gaskets within the
new specification limits. Management decided to increase
product inspection and, in particular, to grade each piece of
material according to thickness so that the wide variation
in thickness could be balanced out at the assembly process.
Extra inspectors were used to grade each piece of soft gas-
ket material. Sheets of the same thickness were shipped in
separate bundles on pallets to a sister plant for assembly.
Thick and thin sheets were selected as needed to make a
hard gasket that met the specification. The process worked
pretty well, and there was some discussion about making it
permanent. However, some felt it was too costly and did
not get at the root cause of the problem.

The Engineering Department’s Analysis
Meanwhile, the staff engineers in the company were con-
tinuing to study the problem and came to the conclusion
that the existing roll mill process equipment for making the
soft gasket sheets simply was not capable of meeting the
new specifications. This conclusion was reached as a result
of the examination of production data and scrap logs over
the past several months. They had researched some new
equipment that had a track record for very good sheet-to-
sheet consistency and had decided to write a proposal to
replace the existing roll mills with this new equipment.
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Process adjustment history
over one shift
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To strengthen the proposal, their boss asked them to
include data that demonstrated the poor capability of the
existing equipment. The engineers, confident that the
equipment was not capable, selected what they thought
was the best operator and the best roll mill (the plant has
several roll mill lines) and took careful measurements of
the thickness of each sheet made on an 8-hour shift. During
that shift, a total of 72 sheets/pulls were made. This was
considered quite acceptable since the work standard for
th% process is 70 sheets per shift.The measurements of the
sheet thickness (in the order of manufacture) for the 72
sheets are given in Table C5.1. The engineers set out to use
these data to conduct a process capability study.

Relying on a statistical methods course that one of
the engineers had in college 10 years ago, the group decid-
ed to construct a frequency distribution from the data and
use it to estimate the percentage of the measurements that
fell within the specification limits.Their histogram is shown
in Figure C5.4. Also shown in the figure are the upper and
lower specification values. The dark shaded part of the his-
togram represents the amount of the product that lies out-
side of the specification limits. It is immediately apparent
from the histogram that a large proportion of the output
does not meet the customer’s needs. Eight of the 72 sheets
fall outside the specification limits. Therefore, in terms of
percent conforming to specifications, the engineers esti-
mated the process capability to be 88.8%. This was clearly
unacceptable. This analysis confirmed the engineer’s low
opinion of the roll mill process equipment.They included it

in their proposal and sent their recommendation to replace
the equipment to the president’s office.

Your Assignment
You have been hired as an external consultant by the com-
pany’s president, Marilyn Carlson. She would like you to
critique the engineers’ analysis, conclusion, and recommen-
dations.

Suspecting that the engineers’ work may be flawed,
President Carlson would also like you to conduct your own
study and make your own recommendations concerning
how to resolve the company’s problem. She would like you

Chapter 13 Time Series13-62

0.0430 0.0450 0.0470

Upper spec.Lower spec.

Soft gasket thickness (inches)

Scrap

Scrap

FIGURE C5.4

Histogram of data from process capability study

GASKET

TABLE C5.1 Measurements of Sheet Thickness

Sheet Thickness (in.) Sheet Thickness (in.) Sheet Thickness (in.)

1 0.0440 25 0.0464 49 0.0427
2 0.0446 26 0.0457 50 0.0437
3 0.0437 27 0.0447 51 0.0445
4 0.0438 28 0.0451 52 0.0431
5 0.0425 29 0.0447 53 0.0448
6 0.0443 30 0.0457 54 0.0429
7 0.0453 31 0.0456 55 0.0425
8 0.0428 32 0.0455 56 0.0442
9 0.0433 33 0.0445 57 0.0432

10 0.0451 34 0.0448 58 0.0429
11 0.0441 35 0.0423 59 0.0447
12 0.0434 36 0.0442 60 0.0450
13 0.0459 37 0.0459 61 0.0443
14 0.0466 38 0.0468 62 0.0441
15 0.0476 39 0.0452 63 0.0450
16 0.0449 40 0.0456 64 0.0443
17 0.0471 41 0.0471 65 0.0423
18 0.0451 42 0.0450 66 0.0447
19 0.0472 43 0.0472 67 0.0429
20 0.0477 44 0.0465 68 0.0427
21 0.0452 45 0.0461 69 0.0464
22 0.0457 46 0.0462 70 0.0448
23 0.0459 47 0.0463 71 0.0451
24 0.0472 48 0.0471 72 0.0428
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to use the data reported in Table C5.1 along with the data
of Table C5.2, which she ordered be collected for you.
These data were collected in the same manner as the data
in Table C5.1. However, they were collected during a peri-
od of time when the roll mill operator was instructed not to
adjust the sheet thickness. In your analysis, if you choose to
construct control charts, use the same three-measurement
subgrouping that the operators use.

Prepare an in-depth written report for the presi-
dent that responds to her requests. It should begin with an
executive summary and include whatever tables and fig-
ures are needed to support your analysis and recommen-
dations. [The data file for this case is named GASKET.
The file contains three variables: sheet number, thickness,
and a code for operator adjustments (A) or no adjust-
ments (N).]

GASKET

TABLE C5.2 Measurements of Sheet Thickness for a Shift Run with No Operator
Adjustment

Sheet Thickness (in.) Sheet Thickness (in.) Sheet Thickness (in.)

1 0.0440 25 0.0464 49 0.0427
1 .0445 25 .0443 49 .0445
2 .0455 26 .0450 50 .0471
3 .0457 27 .0441 51 .0465
4 .0435 28 .0449 52 .0438
5 .0453 29 .0448 53 .0445
6 .0450 30 .0467 54 .0472
7 .0438 31 .0465 55 .0453
8 .0459 32 .0449 56 .0444
9 .0428 33 .0448 57 .0451

10 .0449 34 .0461 58 .0455
11 .0449 35 .0439 59 .0435
12 .0467 36 .0452 60 .0443
13 .0433 37 .0443 61 .0440
14 .0461 38 .0434 62 .0438
15 .0451 39 .0454 63 .0444
16 .0455 40 .0456 64 .0444
17 .0454 41 .0459 65 .0450
18 .0461 42 .0452 66 .0467
19 .0455 43 .0447 67 .0445
20 .0458 44 .0442 68 .0447
21 .0445 45 .0457 69 .0461
22 .0445 46 .0454 70 .0450
23 .0451 47 .0445 71 .0463
24 .0436 48 .0451 72 .0456

13-63REAL-WORLD CASE

This case is based on the experiences of an actual company whose identity is disguised for confidentiality reasons. The case
was originally written by DeVor, Chang, and Sutherland (Statistical Quality Design and Control [New York: Macmillan
Publishing Co., 1992] pp. 298–329) and has been adapted to focus on the material presented in Chapter 12.
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ANSWERS TO SELECTED EXERCISES
13.5 a. 127.63 b. 149.74 13.7 a. 100, 100, 101.03, 101.03, 99.48, 100, 101.55, 100.52, 101.55, 102.58, 104.12, 105.15, 103.61, 104.12, 104.64,
103.09, 103.09, 102.58, 102.06, 102.06, 103.09, 102.58, 103.09, 100.52, 101.55, 100.52 b. quantity c. 95.10, 95.10, 96.08, 96.08, 94.61, 95.10,
96.57, 95.59, 96.57, 97.55, 99.02, 100, 98.53, 99.02, 99.51, 98.04, 98.04, 97.55, 97.06, 97.06, 98.04, 97.55, 98.04, 95.59, 96.57, 95.59
13.9 a. 100.00, 157.61, 158.15, 160.05, 167.39, 174.18, 164.67,172.28, 188.59, 185.33, 181.79, 209.51, 261.68, 214.95, 258.70, 291.85 c. price
13.11 a. 51.43, 68.77, 100.00, 158.52, 270.39, 412.59, 581.78, 768.60, 1033.83, 1272.99 b. 19.02, 25.43, 36.98, 58.62, 100.00, 152.59, 215.16,
284.26, 382.35, 470.80 c. flattens the graph 13.13 a. Manufacturing: 100.00, 150.52, 197.52, 224.22, 256.11, 297.72; transportation: 100.00,
150.85, 193.88, 220.58, 242.01, 275.85 c. Earnings: 100.00, 149.64, 195.01, 224.17, 252.95, 296.82; hours: 100.00, 99.92, 100.51, 100.00,
101.36, 101.61 13.15 13.17 a. 194.0, 194.0, 194.4, 194.7, 194.4, 194.3, 194.8, 194.9, 195.3, 196.0, 197.2, 198.6, 199.1, 199.7, 200.3,
200.3, 200.2, 200.0, 199.6, 199.3, 199.4, 199.3, 199.5, 198.6, 198.3, 197.6 b. 194.0, 194.0, 195.6, 195.9, 193.6, 193.9, 196.4, 195.3, 196.7, 198.5,
201.3, 203.5, 201.5, 201.9, 202.8, 200.6, 200.1, 199.2, 198.2, 198.0, 199.6, 199.1, 199.8, 196.0, 196.8, 195.4 c. 13.19 a. 368.00,
432.00, 436.80, 393.76, 386.75, 367.75, 349.55, 358.71, 381.34, 384.27, 388.05, 344.01, 304.00, 283.20, 279.84, 274.37, 302.87, 350.97, 397.39,
434.68 13.21 a. 926.0, 950.5, 1021.8, 1125.4, 1202.0, 1268.4, 1283.0, 1261.4, 1198.6, 1132.7, 1074.7, 1015.2, 990.7, 979.3, 980.0,
1005.2, 1032.9, 1052.9, 1072.3, 1099.0, 1119.8, 1138.1, 1150.1, 1172.9, 1207.8, 1241.3, 1283.6, 1425.6; 926.0, 1146.5, 1611.4, 2013.3,
1904.1, 1869.8, 1459.6, 1106.3, 680.3, 554.0, 553.1, 486.4, 742.5, 862.7, 974.6, 1206.3, 1274.4, 1237.1, 1246.0, 1329.7, 1309.3, 1303.6, 1262.6,
1366.5, 1506.4, 1539.3, 1651.5, 1815.3 b. 13.25 a. 199.48; 199.74 b. . and 

and 13.27 a. yes b.
c. 13.29 a. forecast for all b. forecast for all 13.31 a. forecast for all

b. forecasts: 433.47, 428.83, 426.12, 430.16, 429.53, 425.71, 428.21, 426.35, 432.13, 444.06, 456.98, 466.84 c. forecasts:
454.09, 466.55, 479.01, 491.47, 503.93, 516.39, 528.85, 541.31, 553.77, 566.23, 578.69, 591.15; one-step-ahead forecasts: 454.09, 444.12,
433.57, 433.84, 430.10, 422.67, 425.37, 423.40, 432.74, 452.27, 473.40, 488.19 13.33 a. b.
c. d. 13.35 a.

b. c. Holt-Winters series with and 
13.37 a. forecasts for all b.
c. Holt-Winters 13.39 a. where 

b. reject
c. Qtr. 1: (27.22, 29.67); Qtr. 2: (29.59, 32.04); Qtr. 3: (27.67, 30.12); Qtr. 4: (32.70, 35.15) 13.41 a. b. 3.84; (1.35,

6.33) 13.43 a. b. 372.61, 372.25 c. 2004: (340.12, 405.11); 2005: (339.59, 404.91) 13.47 a. inconclusive b. inconclusive
c. reject d. fail to reject 13.49 b. Models statistically useful for Banks 1, 2, 3, 4, and 7 c. No evidence of positive autocorrelation
for all 9 banks 13.51 a. yes b. reject c. validity in question 13.53 a. yes c. yes d. no 13.55 a. 100.0, 70.3, 59.5, 72.2, 70.2, 124.2
b. price c. quantities of each product in 1995; quantities of each product in each year 13.57 a. forecasts: 118.68,
126.00, 133.32 b. Year 11: (100.61, 136.75); Year 12: (107.06, 144.94); Year 13: (113.40, 153.24)
13.59 13.61 a. c. d. 2007: (19.94, 70.89); 2008:
(19.68, 71.02) 13.63 13.67 a. $39,745.63; $48,643,11; 2005
b. $31,049.28

F2006,1 = 11,356.88; F2006,2 = 11,442.24; F2006,3 = 11,527.60; F2006,4 = 11,612.96
F2007 = 45.41, F2008 = 45.35YNt = 47.24 - .065tF2005 = 5.86, F2006 = 5.50, F2007 = 5.14

YNt = 38.17 + 7.32t;
H0d = .905,

H0H0

YNt = 385.33 - .363t
YNt = 15.52 - .417tH0

YNt = 11.49 + .51t - 3.95x1 - 2.09x2 - 4.52x3; F = 1275.44,x2 = 51 if Qtr. 2, 0 otherwise6, x3 = 51 if Qtr. 3, 0 otherwise6
x1 = 51 if Qtr. 1, 0 otherwise6, E(Yt) = b0 + b1t + b2x1 + b3x2 + b4x3,

F2001 = 68,718.4, F2002 = 69,260.5, F2003 = 69,802.6, F2004 = 70,344.7, F2005 = 70,886.85 years = 68,017.2
v = .5w = .7MAD = 24.62, MAPE = 1.89, RMSE = 25.29MAPE = 5.59, RMSE = 78.28

MAD = 73.18, MAD = 4.35, MAPE = 2.23, RMSE = 4.46MAD = 3.47, MAPE = 1.78, RMSE = 3.63
-4.86, -3.02, -5.18-3.58, -2.14, -4.70

12 quarters = 433.47
3 quarters = 1198.93 quarters = 1238.8F2006 = 198.11

F2006 = 187.53v = .7: F2003 = 198.58, F2004 = 199.14, F2005 = 199.70F2004 = 200.02, F2005 = 200.18; v = .3
v = .3: F2003 = 199.86, v = .7v = .7:v = .3:v = .9 series

v = .9:
v = .1:

v = .2 series

v = .2
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