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Abstract 
 

Low exploitation of wind power in Kenya can be linked to the limited or nonexistent information 
on wind characteristics for many regions. This study aimed to address this gap by examining wind 
characteristics through Weibull and Wavelet techniques, evaluating both temporal, spatial, and 

spectral aspects to estimate wind power potential. Wavelet technique was used to study spectral 
characteristics while Weibull was used in fitting the wind data to obtain other temporal 

characteristics of the wind regime. Wind data of Narok county, recorded between 2011 and 2021 
for Narok weather station, was analyzed using the Weibull and Wavelet techniques to avail the 
desired wind characteristics. The wind regime was characterized by an annual mean wind speed 

of 4.3 m/s which correspond to a mean wind power density of 126 W/m2. Based on wind speed, 
wind regime in Narok can be classified as gentle breeze at 10 m. Based on wind power density, 

wind regime in Narok belongs to a class 2 wind power. The wind regime was found to have period 
of about 1 year and is dominated by frequencies in the range 0.4 Hz to 0.5 Hz. The wind 
predominantly blows from the East direction. Weibull distribution describes the wind regime in 

Narok with an accuracy of 0.94 based on R2 error approximation technique which imply that 
Weibull distribution is about 94% accurate in describing the wind regime of Narok.  The study 

found that wind regime in Narok was generally viable for wind power extraction at heights above 
19 m regardless of the scale of wind power extraction. 
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CHAPTER ONE 

INTRODUCTION 

1.0 INTRODUCTION 

Global energy demand is steadily increasing, with the International Energy Agency (IEA) 

projecting a rise from the current 25,000 TWh to approximately 37,500-50,000TWh by 2050 

(Agency, 2021). This surge is primarily driven by rapid population growth and urbanization. In 

Africa, energy demand is also rising quickly. The African Union Development Agency (AUDA) 

estimates that the continent's energy needs will more than triple by 2050, which is significantly 

higher than the global average. This notable increase is due to Africa having the fastest -growing 

population and ongoing development. Currently, energy consumption in Africa shows that 

biomass represents 45%, crude oil 23%, coal 13%, natural gas 16%, and renewables just 2% (kfw 

et al., 2021). Similarly, in the East Africa Community (EAC) region, biomass accounts for 80%, 

fossil fuels 16%, and renewables 3.4% (Community, 2016). Future energy demand in the EAC is 

also anticipated to triple by 2050 (Community, 2016). This data highlights that the majority of 

energy consumed in both East Africa and the broader continent is derived from biomass and fossil 

fuels. Kenya, like most African countries, has an ever-increasing population and fast-growing 

economies (Amos et al., 2020). This growth likewise comes with rising demand for energy, a 

precursor for economic progress and industrialization as seen earlier. High population growth is a 

characteristic of developing countries and, in most cases, is exponential (Maguta et al., 2021). This 

implies that energy demand will always grow in a logarithmic relationship to population. 

 A large percentage of energy used in Kenya comes from biomass (wood) at 62.5%, fossil fuels at 

20.6% and renewable energy sources contributing 16.9% (Ibrahim et al., 2024). Fossil and wood 
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fuels take the largest share in the energy matrix (Dida et al., 2022). This means that the country 

heavily relies on conventional energy sources whose reserves, studies have shown, are steadily 

declining globally (Asaad et al., 2021). The decline may be attributed to the non-renewable nature 

of conventional energy sources and the environmental pollution associated with them (Devasani 

et al., 2021). These two factors triggered a match towards embracing renewable energy sources 

(Suphi & Cecilia, 2018) as from the year 1996. 

In Kenya, renewable energy sources utilized include solar, wind, geothermal, biomass, and hydro. 

According to the Kenya energy statistics report (Mohammed et al., 2021), hydro and geothermal 

are the most widely used, each contributing around 29% to the electricity grid. In contrast, wind, 

and solar are less utilized, contributing 13% and 3% respectively, as shown in Table 1.   

Table 1: Share of energy generation in Kenya as of the year 2022 (Authority, 2021) 

 

 It is possible to use only renewable energy sources in Kenya if the concept of renewable energy 

mix is fully embraced. Renewable energy mix in this case means all the renewable energy sources 

are exploited. For this to happen, solar and wind energy exploitation must be prioritized  since there 
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is huge power potential for both yet only a small percentage of that potential has been tapped . For 

instance, wind and solar energy potential was roughly estimated to be around 4600 MW and 15000 

MW allover Kenya respectively (Chemengich & Masara, 2022).  The estimated wind power 

potential alone is enough to suffice the country’s energy needs, since the potential is twice as much 

as the country’s energy demand. 

1.1 Wind energy resource  

Wind can be considered a mass of moving air mainly due to the density gradient of air molecules 

caused by pressure and temperature differences over the earth's surface. It is the kinetic energy of 

a moving mass of air. This energy is what is harnessed using wind turbines (John & Tony, 2015). 

The mechanical power produced by the turbines can then be converted to do useful work.  

 Studies show that Kenya has huge wind power potential based on the wind map developed by the 

Energy and petroleum regulatory authority (EPRA) (Authoriy, 2020), as shown in Figure 1. EPRA 

further indicates that 73% of Kenyan land experience favorable wind speeds of 6 m/s at 100 m 

height. In addition, 28228𝑘𝑚2 land experiences wind speeds ranging between 7.5 m/s to 8.5 m/s 

and about 2825𝑘𝑚2  experiences wind speeds between 8.5 m/s to 9.5 m/s (Authoriy, 2020). The 

data further confirms that there is indeed colossal wind power potential in Kenya, which remains 

untapped. Kenya has installed wind power capacity of about 436 MW, of which 25 MW is in 

Ngong Hills, 100 MW in Esilanke area in Kajiado county and 311 MW is on the eastern shores of 

Lake Turkana (Chemengich & Masara, 2022). The remaining locations in Kenya with favorable 

wind speeds are yet to be exploited.  
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Figure 1:Kenya wind speed map as released by EPRA as of December 2019 (Authoriy, 2020). 

The map clearly shows Narok County as one of the locations that have favorable wind speeds and, 

therefore, a potential site for wind energy extraction. Knowing that a place is lying within a windy 

region in a wind map is just but a first step in wind power viability assessment. The next crucial 

step is wind regime characterization and wind power density estimation which must be done prior 

to wind power extraction. Wind regime characteristics such as most probable wind speed, 

direction, distribution density, wind turbulence intensity, mean wind speed, wind speed spectra 

and wind power density are crucial information for exploiting wind energy. These characteristics 

are used in estimating wind power potential and designing wind farms. For instance, wind power 

density reveals whether a place is viable for commercial wind power extraction, that is, wind power 

density must exceed 200 W/m2 to achieve economic viability. However, most of these wind 

characteristics in Narok County had either not been studied at all or only a few had been studied. 
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Therefore, this research evaluated these wind characteristics and approximated wind power density 

thereof for Narok County. The two parameter Weibull distribution and Morlet Wavelet   

decomposition technique were applied to the decadal (2011 to 2021) wind data of the county. 

1.2 Weibull probability distribution function 

Two parameter Weibull function is a probability distribution function (PDF) ideal for describing 

stochastic data sets such as wind speed regime of a given area. Indeed, the distribution has been 

reported by scholars to be the most reliable tool of analyzing most wind speed regimes of several 

areas around the world (Kalam et al., 2019). High accuracies of the PDF in wind speed data 

descriptions may be attributed to the simple, versatile and flexible nature of the PDF shown in 

equation 1.1. The PDF is versatile and flexible in the sense that its parameters are determined from 

the data that is being studied. Therefore, the PDF can fit wind regimes of various regions since the 

parameters are area specific. The scale parameter measures the location of the probability 

distribution curve along the wind speed axis. It is also known as a measure of mean wind speed  

and range. For instance, as scale parameter increases, the distribution curve shortens and becomes 

wider. Shortening and widening of the curve indicates that the range of observed wind speeds has 

widened and the number of higher wind speeds has also increased therefore increasing mean wind 

speed. The scale parameter has the dimensions of speed just like wind speed quantity. Shape 

parameter on the other hand is dimensionless and measures the probability of observing either low 

or high wind speeds of a regime. For instance, shape parameters ranging between 1 and 2 indicates 

that there is high probability of observing wind speeds ≤ 5.5 𝑚/𝑠 which are categorized as low 

wind speeds (Shu & Mike, 2021). The parameters are estimated through maximum likelihood  

approach as discussed in detail in chapter three. Equation 1.2 on other can be used to estimate wind 

power potential which is considered a better approximation of wind power density than traditional 
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direct calculation which only employs mean wind speed since equation 1.3 accounts for the 

probability of occurrence of chosen wind speed. Weibull cumulative distribution function (F(x; c 

,k)) in equation 1.3 gives the probability of wind speeds of an area not exceeding a chosen wind 

speed.. Moreover, plotting the actual cumulative distribution of wind speeds alongside the 

estimated cumulative distribution of wind speeds gives a good visualization of how well Weibull 

distribution describes the data. However, analytical evaluation of the Weibull’s suitability in 

describing the wind regime can be done through error approximation techniques such as Root 

Mean Square Error (RMSE) and R-squared techniques (Abdoul et al., 2023). 

𝑓(𝑥; 𝑐, 𝑘) = {
𝑘

𝑐
(

𝑥

𝑐
)

𝑘−1

𝑒−(
𝑥

𝑐
)

𝑘

;  𝑥 ≥ 0

0                           ; 𝑥 < 0
                                                                                           (1.1) 

Equation 1 is a two-parameter traditional Weibull distribution where 𝑐 &𝑘 are scale and shape 

parameters respectively whereas x can be any variable in this context, x is taken to be the observed 

wind speed (Mohamed et al., 2023).  

𝑃(𝑣) =
1

2
𝜌 ∫ 𝑓(𝑥: 𝑐, 𝑘)

∞

0
𝑥̅3  𝑑𝑥                                                                                                               (1.2)                                                                                                                                                                                                          

𝑓(𝑥; 𝑐, 𝑘) is a probability distribution function (PDF), and v is the transient wind speed. 

𝐹(𝑥; 𝑐, 𝑘) = {1 − 𝑒−(
𝑥

𝑐
)

𝑘

          ;  𝑥 ≥ 0
0                           ; 𝑥 < 0

                                                                                           (1.3) 

1.3 Morlet wavelet decomposition 

Wavelet decomposition is a mathematical technique that can be used to analyze the frequency 

content of a time series, such as wind speed data. By decomposing a time series into a set of 

wavelets, it is possible to identify and isolate different frequency components of the data, which 
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can provide insight into the underlying physical processes that are driving the variability of the 

wind.  

In wind speed analysis, wavelet decomposition can be used to identify and analyze different 

frequency components of the wind speed data (Stefano et al., 2022), such as seasonal variations, 

and longer-term trends. The wavelet decomposition can reveal how the amplitude and frequency 

of these different components change over time, which can shed light into the physical processes 

causing the variability of the wind. For example, it can help identify the presence of diurnal wind 

patterns driven by daily heating and cooling cycles, seasonal variations influenced by changes in 

atmospheric conditions, or the impact of large-scale weather systems such as frontal passages or 

storm events on wind behavior. 

One common approach to wavelet decomposition in wind speed analysis is to use the continuous 

wavelet transform (CWT) with Morlet as the mother wavelet, which decomposes the time series 

into a set of wavelets that are scaled and translated in time. The CWT can provide information on 

the amplitude and frequency of the different wavelets in the time series, which can reveal patterns 

and trends that are not visible in the raw data. Equation 1.4 and 1.5 are generalized CWT and 

Morlet wavelet respectively (Marta & Adam, 2022). 

𝐶𝑊𝑇𝑥
ψ(𝑣; 𝑎. 𝑏) =

1

√𝑎
∫ 𝑣(𝑡). 𝜓 (

𝑡−𝑏

𝑎
) 𝑑𝑡

∞

−∞
                                                                                            (1.4) 

𝜓(𝑡) =
1

√𝜋
4 [𝑒𝑖 𝜔0𝑡 − 𝑒

𝜔0
2

2 ] 𝑒
𝑡2

2                                                                                                                         (1.5) 

Where, 𝑎, b, 𝜓() denotes the scale, position parameter, and generalized mother wavelet, 

respectively. While, 𝑣(𝑡) is the signal being investigated. 𝜔0  is the central frequency of the mother 

wavelet. 
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The scale parameter in CWT represents the width of the analyzing wavelet in the frequency 

domain. In the context of wind speed analysis, smaller scales correspond to high-frequency 

variations in the wind speed, such as gusts, while larger scales correspond  to low-frequency 

variations, such as changes in wind direction or speed due to weather patterns. While the location 

parameter can be thought of as a sliding window that moves along the time axis of the signal, 

allowing the analysis of the frequency content of the signal at different time instants. The location 

parameter indicates the time at which the wind speed is analyzed, and allows the detection of 

changes in wind speed over time (Eleonora et al., 2014). 

1.5 STATEMENT OF THE PROBLEM 

It has already been discussed in section 1.1e that the most reliable energy sources in Kenya are 

hydropower and geothermal. These sources provide the power base load demand of the country. 

However, hydropower is adversely affected by droughts, where during certain seasons, water 

volumes in rivers are reduced, consequently generating low electrical power. Utility providers 

resort to power rationing to cushion industries during peak demand. This is however not a 

permanent solution as it does not address the inevitable rise in future power demand arising from 

exponential population growth experienced by most African countries. The only way to solve the 

power problem is to diversify current power generation sources. One of the low-hanging fruits that 

can be exploited is wind energy, which remains largely unexploited in Kenya, especially in Narok 

County. However, this is currently not possible because relevant technical information on wind 

power potential, dominant wind direction, wind speed variability and spectral characteristics of 

the wind regime in Narok County is currently unavailable. Knowledge of these is critical for 

implementing a meaningful wind power project. This information gap could be responsible for the 

low exploitation of the wind power sector in Kenya. This research is an attempt to bridge this gap 
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by studying hourly wind data measured between 2011 and 2021. The research investigated mainly 

site-specific wind characteristics relevant to wind power generation, such as wind power density, 

wind speed variability with respect to time and height, most probable wind speed (or power), wind 

speed carrying maximum energy, dominant wind speed, wind turbulence intensity and wind power 

spectrum using mainly Weibull distribution and Morlet wavelet decomposition. 

1.6 JUSTIFICATION  

 This research provides crucial technical information about the characteristics of the wind regime 

in Narok county. The availability of this information may encourage the installation of wind power 

plants in the region, which would help diversify the country's sources of power generation. This 

diversification is important because it reduces reliance on hydropower and other non-renewable 

energy sources, leading to a decrease in greenhouse gas emissions and a stronger response to 

climate change. 

Moreover, the installation of wind farms in Narok county can enhance energy security and reduce 

dependence on imported fossil fuels, thereby benefiting both the county and the country as a whole. 

The identification of Narok as a suitable location for wind farms may attract investments in wind 

energy, fostering economic development in the area. This development can create job 

opportunities in manufacturing, construction, maintenance, and other related sectors. 

Importantly, the research results eliminate the need to conduct a full wind power feasibility study 

in Narok, saving costs that would have been incurred by the government and other responsible 

bodies. Instead, the feasibility study can focus on other aspects such as assessing environmental 

impacts. 
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Additionally, the research findings have the potential to inspire innovation in wind power 

technologies specifically designed for the wind characteristics of the Narok region. This opens up 

new avenues for further research and contributes to the growth of knowledge within the scientific 

community. There are still recommended research areas that require additional investigation, 

creating opportunities for scholars to expand upon the existing body of knowledge. 

1.7 GENERAL OBJECTIVE 

To investigate wind characteristics and estimate wind power density of Narok weather station in 

Narok county using Weibull and Wavelet techniques. 

1.8 SPECIFIC OBJECTIVES 

i. To determine the dominant wind direction in Narok County using wind polar chart 

analysis. 

ii. To fit the wind speed data using Weibull distribution 

iii. To characterize wind speed data using Morlet wavelet transform and Weibull distribution 

parameters  

iv. To determine the wind power potential of the site using the Weibull distribution  
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

In this section, a compilation of relevant studies conducted by scholars worldwide in the same field 

is presented. Section 2.1 focuses on reviewing similar or related researches conducted specifically 

on wind energy assessment around the country. In Section 2.2, a comprehensive examination is 

undertaken of the common techniques applied globally for the research objectives of this study. 

2.1 Why the study area was chosen 

Cheruiyot et al. (2016) characterized wind speed and estimated the wind power potential of the 

Kesses region in Kenya which exhibited unimodal and positively skewed characteristics. Implying 

that the wind speeds were dominated by low wind speeds (≤ 5.5 𝑚/𝑠). In the study, the two-

parameter Weibull function was used to characterize the wind speed and estimation of wind power 

density using hourly wind data recorded for five years. The results indicated that the region had 

wind power densities of 41.24 W/m2 and 228.91 W/m2 at 10 m and 100 m heights, respectively. 

The average wind speed reported was 3.895 m/s and 6.926 m/s at 10 m and 100 m anemometer 

heights, respectively. The results suggested that the region is only suited for power generation at 

100 m hub height. At 10 m, the power density falls into class 1 wind power density category since 

it is less than 100 W/m2. Moreover, the results suggested that the wind speed increasing with 

increase in height as supported by the increased power densities at 100 m as opposed to 10 m. 

A similar study, using the two parameters Weibull PDF, was done by Nyasani et al. (2018) at 

Kisumu city. The study established that wind energy in Kisumu city is only viable for domestic 

scale wind power extraction at 50 m turbine height. Mean wind speed that was recorded was 2.38 
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m/s at 10 m height. Annual wind power density at 50 m height reported was 127.99 W/m2 which 

is classified as class II wind regime. Wind speed carrying maximum energy at 10 m height was 

reported to be 2.85 m/s. The same distribution was used to estimate wind power density in Eldoret 

and the results showed that the region has a mean wind power density of 80.379 W/m2 at 20 m 

height with a mean wind speed of 2.5 m/s at 2 m height (Choge, 2015). Both Kisumu and Eldoret 

regions are not suitable for commercial wind power extraction since the reported wind power 

densities are 200 W/m2.  

Applying the same distribution as used in the previous paragraph, another study conducted in 

Marasabit and Garissa to determine the feasibility of wind power generation reported that the two 

counties are viable places for wind energy exploitation. The researchers similarly used Weibull 

PDF to characterize the wind speed and calculate the wind power densities of the two regions. 

Marsabit registered a higher wind power density of 2202 W/m2 with a prevalent wind speed of 11 

m/s, while Garissa registered a mean wind power density of 190 W/m2 with a prevalent wind speed 

of 3.90 m/s. The results suggest that Marsabit is suited for grid-connected wind farms while 

Garissa County is not based on the 200 W/m2 wind power density thresh-hold requirement. 

However, Garissa would be suitable for commercial wind power extraction at higher heights than 

the 10 m since at higher heights, the wind speed increases. Marsabit county is also suitable for 

other domestic uses such as water pumping which requires higher wind speeds greater or equal to 

10 m/s (Kamau et al., 2011). 

Unlike the previously cited authors who used Weibull distribution alone, Ongaki et al. (2021) used 

Rayleigh distribution to estimate the wind power potential of Kisii region in Kenya. Apart from 

wind power potential estimation, the team also characterized the wind regime of Kisii County for 

different time-frames (daily, monthly, and annually). The results suggested that the region has a 
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wind power density of 29 W/m2 and a mean wind speed of 2.9 m/s. Based on root mean square 

error analysis, Rayleigh PDF performed slightly better than Weibull for data in Kisii county. 

Similar research using the same analysis tools was conducted in Nyamira County but with hourly 

wind and direction data recorded for three months. Mean power densities reported for the area 

were 142.57 W/m2 and 147 W/m2, obtained and estimated using Weibull and Rayleigh, 

respectively. The main motivation behind the choice of the two distributions was that the wind 

regime was unimodal. Using two distributions was for comparison and results validation purposes. 

In Nyamira, Weibull was reported to perform better than Rayleigh. Rayleigh was further away 

from the actual power density (135. 30 W/m2). The dominant wind direction was reported to NNW, 

and NW for the three months data used (Kwamboka et al., 2018). 

Still on wind power density related studies, another study investigated wind resource potential for 

small-scale domestic wind turbines employing the combined empirical and computational fluid 

dynamics approach to investigate wind characteristics and compute wind power potential at 

Kenya's Kiseveni (in Machakos county) site. The results suggested that a small power density 

ranges between 31.65 W/m2 and 54.00 W/m2 at a height range from 40 m to 100 m. Based on the 

study, the area's wind regime was found to be class 1 wind, which means that the region is not 

suitable for grid-connected power generation systems but only for small-scale domestic wind 

power generation since wind power density is less than 100 W/m2  (Justus et al., 19).  

In Narok County, Kenya where the current study was conducted, there exists only one research 

related to wind power potential assessment. The reported research focused on investigating the 

best distribution that can model the wind speed distribution data of Narok County. The study 

compared the three parameter Gamma, three parameter Weibull and two parameter Weibull. The 

study utilized 2-year wind speed distribution data from Olderkesi. According to the study, the wind 
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regime studied was dominated by low wind speeds but not null wind speeds. Therefore, the three 

parameter Gamma fitted the data best because of low wind speeds and the third parameter (location 

parameter) defines the lowest occurring wind speed. The results vindicated three parameter 

Gamma distribution as the most preferred candidate (Otieno et al., 2021). The research, however, 

did not study the wind characteristics of Narok County. 

In summary, some studies have been reported about wind energy assessment in some regions 

around the country, as sampled above. Among the studies that have been reported, there are still 

similar minimal studies that have been reported for Narok County, even though it is one of the 

regions marked as areas with favorable wind speed, as seen in Chapter One. The wind 

characteristics of Narok county remains vaguely understood and insufficient to inform design and 

development of wind power system. The research bridged this gap by characterizing wind speed, 

hence estimating wind power density for Narok County using decadal wind data from the Narok 

weather station. 

2.2 Review of available wind data analysis tools 

Wind analysis techniques must be employed to understand the wind regime characteristics of the 

study area which remain largely unknown as seen in section 2.1 of this chapter. So, it is reasonable 

to review the methods available, their strengths, and their weaknesses. Various researchers present 

different approaches in the literature that one can consider when analyzing wind data to gain 

knowledge of wind power potential and the wind speed frequency spectrum. Wind power potential 

is derived from stochastic wind data via PDFs, while wind speed frequency spectrum originates 

from signal analysis techniques. Several PDFs have been used to compute wind power density in 

different places around the globe. These PDFs used for wind power density estimation can be 

broadly classified as mixture PDFs and one-component (pure) distribution or persistence PDFs. 
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Mixture distribution models wind speed regime with more than one frequently occurring wind 

speed (multimodal) while one component distribution describes unimodal wind speed regime. 

Regarding spectrum analysis, a commonly used technique is the Wavelet Transform (WT) 

especially the Continuous Wavelet Transform (CWT) when it comes to wind data. These 

techniques will be discussed in this section. 

2.2.0 Estimation of wind power potential using a mixture of PDFs 

Mixture distribution is a combination of two or more distributions weighted according to their 

proportionate contribution to the mixture, and the summation of the weighting parameter must be 

unity (Ma, 2017). The distribution is normally applicable when computing the wind power density 

of multimodal data whose distribution can only be fitted by more than one distribution linearly 

combined. Weighting factor represents the proportion of the wind speeds distribution that a 

particular PDF in the mixture describes. Mixture distribution has been grouped in two, 

homogenous and heterogenous mixture as discussed in sections 2.2.1 and 2.2.2  

 2.2.1 Homogeneous mixture PDF used in WPD estimation 

Homogenous mixture distribution has its components coming from the same type of distribution. 

For example, we have the Weibull-Weibull mixture (WW), Gaussian Mixture Model (GMM), 

Truncated Normal-Normal mixture (TNN), and so forth. This type of distribution describes 

multimodal wind speed regime where wind speed distribution profiles associated to each modal 

wind speed follow the same PDF species but the parameters for each component in the mixture 

are different. Parameters for each component of the mixture must be found independently. A few 

researchers worldwide have used this approach to estimate wind power potential, as evidenced by 

the papers sampled in the next paragraphs of which it is worth mentioning that homogenous models 

remain the most unexplored PDFs currently (Ma, 2017).  
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Gaussian mixture model (GMM) was used to estimate the wind power potential of multimodal 

wind speed data recorded for 54 years at Ijmuiden in Holland by Muhammad et al. (2020). In order 

to assess the suitability of the distribution in estimating wind power potential, its performance was 

compared to two-parameter Weibull (W2) distribution on the same data. The results showed the 

peak wind speed range was 6.43 m/s to 7.93 m/s, while wind power density was estimated to be 

202 W/m2.   It was shown that GMM proved superior to standard two parameter Weibull according 

to Kurtosis and Skewness (K-S) test. It was also shown that GMM is suitable to model multimodal 

wind speed data with a confidence level of 95% as opposed to 2-parameter Weibull distribution 

(Ahmed et al., 2018). For short-term wind power density prediction, Weibull proved to be superior 

to GMM implying that, wind speeds within short period of time were unimodal and positively 

skewed. The accuracy of GMM relies heavily on the correct approximation of the parameters for 

the component distributions and the number of components based on the regime of the wind being 

studied. The wind speed characteristics were shown to depend on the height at which the wind 

speed data was collected. This means, the greatest challenge of this approach is correctly 

estimating parameters considering the wind speed regime and deciding on how many components 

should be present in GMM. 

Apart from GMM mixture model that has been applied in wind speed analysis, 2-component 

Weibull-Weibull (WW) mixture model can also be applied to study multimodal wind regime as 

demonstrated by Jaramilo et al. (2004). WW mixture was used to study wind speed characteristics 

relevant to wind power density approximation in Mexico at a station called La Ventosa (Jaramilo 

& Borja, 2004). The authors chose the distribution because the wind regime displayed bimodal 

characteristics. Weibull-Weibull mixture was reported to be better in estimating the Capacity 

Factor (CF) of wind turbines installed in the area. CF registered using WW was 0.58, while that 
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of two parameter Weibull distribution was 0.51. The researchers also showed that two parameter 

Weibull underestimated the probability of occurrence of wind speed between 12 to 20 m/s and 

overestimated wind speed occurring between 4 and 12 m/s. Based on the reported results, WW 

was concluded to be better in bimodal wind data analysis compared to Weibull distribution. 

Reported challenges associated with this approach were generally similar to the ones mentioned 

in the last paragraph.   

2.2.2 Heterogenous mixture distribution used in WPD estimation 

Heterogeneous mixture distributions describe multimodal wind regimes where wind speed 

distribution profile associated to each modal wind speed is described by a unique species of PDFs. 

Similarly, each component of the mixture has different parameters. These distributions are 

similarly applied to assess wind power potential for multimodal wind regimes. Examples of such 

distributions include; Gaussian Weibull mixture, Lognormal Weibull (LW), etc. This type of 

distribution is the most widely used in this category as opposed to the homogenous case. Some 

cases of heterogenous mixture distributions are described below. 

Gugliani et al. (2017) studied wind power density employing a number of mixture models such as 

Weibull-Weibull, Gamma Weibull mixture (GW), Truncated Normal Weibull (TNW), Truncated 

Normal-Normal (TNN), Truncated Normal Gamma (TNG), Gamma-Gamma (GG) and Maximum 

Entropy Principle (MEP) based distributions. They compared the performance of the mixture 

models with the conventional two parameter Weibull (W2) for three different sites in India, 

namely, Calcutta, Ahmedabad, and Trivandrum stations. The mixture models showed superiority 

over two parameter Weibull and MEP distributions in all three sites suggesting that the wind 

regimes in all of them were multimodal. Truncated Normal Weibull mixture performed the best 

and managed to estimate the wind energy to an accuracy of 99.80% according to RMSE and R2 
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test in Calcutta station. Error in approximating wind power density of the station was reduced to 

5.12 % when TNW distribution was used from the 10.49% error previously registered when two 

parameter Weibull distribution was used. Truncated Normal Gamma distribution best fits the wind 

power density histogram in the Ahmedabad station. The error was reduced from 6.78% registered 

by two parameter Weibull to 3.91% when Truncated Normal Gamma was used. Lastly, Truncated 

Normal Gamma also outperformed other distributions in the Trivandrum site. The results also 

showed that MEP distributions registered the least performance; therefore, it's unsuitable 

distribution in estimating wind power potential for the studied sites. The authors clearly articulated 

that none of the mixture distributions investigated could model wind regimes dominated by low 

but non-stationary wind speeds. According to the research, the most qualified distributions (TNW 

and TNG) are given by equations 2.1 and 2.2. 

 𝜑(𝑥; 𝜆, 𝑘, 𝜇, 𝜎, 𝑎) = 𝑎𝑓(𝑥; 𝜆, 𝑘) + (1 − 𝑎)𝑞(𝑥; 𝜇, 𝜎)                                                  (2.1) 

Where; 𝑞(𝑥; 𝜇, 𝜎), 𝜇, 𝑎𝑛𝑑 𝜎 represents the truncated normal distribution, mean and standard 

deviation, respectively. Other terms bear the same meaning as earlier defined. The truncated 

normal distribution is given in equation 2.3. 

𝑞(𝑥; 𝜇, 𝜎) = ∫
1

𝐼(𝜇,𝜎)𝜎√2𝜋
𝑒𝑥𝑝 [

(𝑥−𝜇)2

2𝜎2
]

𝑥

0
                                                                                        (2.3) 

Where; 𝐼(𝜇,𝜎) is the normalization factor. 

 𝜑(𝑥; 𝜆, 𝑘, 𝑎, 𝑏, 𝑤) = 𝑤𝑞(𝑥; 𝜇, 𝜎) + (1 − 𝑤)𝑓(𝑥; 𝑎, 𝑏)                                                              (2.4) 

Where; equation 2.4 is the TNG distribution, w is the weighting factor for this model and 

𝑓(𝑥;  𝑎, 𝑏) is the Gamma distribution. 
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Weibull-Weibull, Gamma Weibull (GW), and Lognormal Weibull (LW) mixtures were similarly 

used to estimate the wind energy output of the actual wind turbine installed in Narakkhalliya, Sri 

Lanka, by (Rajapaksha & Kanthi, 2016) using wind speed recorded in the area. It was found that 

Weibull-Weibull mixture distribution registered the least error margin in approximating the energy 

of the place as compared to the actual energy produced by the actual turbine located in the area. 

The energy output of the turbine was measured at 40 m turbine height. The distribution registered 

an accuracy level of 83.2%, while 2-paramerter Weibull registered an accuracy of 75%. The 

research also reported that Weibull-Weibull accuracy in energy approximation drops slightly when 

wind speeds exceed 11 m/s. The main challenge presented by the authors is the computational cost 

required when estimating the parameters of the distributions. Equations 2.5 and 2.6 present LW 

and GW, respectively. 

𝜑(𝑥; 𝜆, 𝑘, 𝜇, 𝜎, 𝑎) = 𝑎𝑓(𝑥; 𝜆, 𝑘) + (1 − 𝑎)ln[𝑞(𝑥; 𝜇, 𝜎)]                                               (2.5) 

Where ln[𝑞(𝑥; 𝜇, 𝜎)] is the lognormal distribution which is the natural log of the normal 

distribution. 

𝜑(𝑥; 𝜆, 𝑘, 𝑎, 𝑏, 𝑤) = 𝑤𝑓(𝑥; 𝜆, 𝑘) + (1 − 𝑤)𝑓(𝑥; 𝑎, 𝑏)                                                               (2.6) 

 2.2.3 Estimation of wind power potential using One component (persistence) PDFs 

This category of distributions best models wind power density for areas with unimodal wind speed 

regimes. Most of these distributions are parametric in nature (Hanbo et al., 2022). PDFs in this 

category are usually simpler as compared to mixture distribution in almost every aspect. Some of 

these PDFs are reviewed below. 
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Rayleigh distribution was used to assess wind power density in Romania of a rightly-skewed 

unimodal wind speed regime. Such wind speed regime is dominated by low to medium wind 

speeds which mostly lie in the range 2 m/s to 6 m/s. Wind power density calculated using the 

distribution was recorded to be 295.4 W/m2, which was an error margin of the real power density 

estimation by about 4.03% (Lizica et al., 2019). The margin of error associated with Rayleigh 

distribution was shown to increase when wind speed regime is dominated with low wind speeds. 

In another study which compared the performance of five different distributions (Normal, 

Rayleigh, Weibull, Chi-Square and Gamma) in estimation of wind power density of Pakistan 

coastline, showed that Rayleigh had the worst performance. The results presented a case where 

unimodal wind regime has a normally distributed wind speeds where the mean, median and modal 

wind speed are closer to each other like in the case of Pakistan coastline. Because of this wind 

regime, Normal distribution ranked as the best distribution followed by the Weibull distribution. 

Reported estimated wind power density based on Normal distribution was ranging between 147.44 

W/m2 to 187.87 W/m2 in all the sites that were investigated  (Muhammad et al., 2021). However, 

most wind regimes are not normally distributed, rendering the applicability of the normal 

distribution restricted to only specific areas that have normally distributed wind regimes (Pritha, 

2020; Nawel et al., 2018).  

Unlike the wind regime of Pakistani coastline, most wind regimes are either negatively or 

positively skewed; where positively skewed wind speed data indicates that occurrences of low to 

medium wind speeds are more frequent, while strong or high wind speeds occur less often but with 

greater intensity when they do occur while for negatively skewed, the opposite is true. 

Approximation of wind power density of such wind regimes have been predicted by two parameter 

Weibull distribution (Ivana et al., 2017). For instance, two parameter Weibull distribution was 
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deployed in Mwingi to estimate wind power densities occurring at varying heights (60 m, 80 m, 

and 100 m). The wind power densities that were reported were; 84.3 W/m2, 100.5 W/m2, and 115 

W/m2 respectively. The wind energy potential of Machakos County in Kenya was investigated 

using the same distribution by Kennedy et al. (2023). The researchers reported a wind power 

density of 17 W/m2 (Kennedy et al., 2023). A similar study was conducted in Galati County in 

Romania where Weibull and Rayleigh were used to estimate wind power density. Two 

distributions were used for results comparison and validation. Rayleigh distribution overestimated 

wind speeds ranging between 1-3 m/s by about 4.71% while it underestimated wind speeds ranging 

between 4-9 m/s by 2.46%. Weibull on the other hand recorded underestimation of 0.24% and 

overestimation of 0.02% in the respective ranges. Based on Weibull distribution, wind power 

density recorded for the area was 361.97 W/m2 which was a slight overestimation of the power by 

10.21 W/m2 (Kiche et al., 2019)  

In general, most scholars have hailed either two parameter Weibull or its variance as one of the 

most applied distributions in wind energy analysis, especially for estimating Wind Power Density 

(WPD) (Younes et al., 2019). That is, Weibull PDF accurately describes most wind regimes for 

different places around the world compared to any other distribution even among the established 

distributions. This might be attributed to the simplicity, flexibility, and versatile nature of Weibull 

and the fact that a lot of established information is available about the distribution. Ad ditionally, 

in studies involving new models or modified models, Weibull distribution has been used as a 

standard (Kengne et al., 2020). Considering all these factors and weighing all distributions on a 

balance against the scope of this work, Weibull distribution is the most desirable distribution. 

Based on the literature reviewed so far, it is clear that two parameter Weibull has never been 

employed to characterized wind regime in Narok especially data from Narok weather station. 
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Therefore, the distribution was employed to characterize wind regime in Narok using data from 

Narok weather station. 

2.3 Parameter estimation methods 

Most of the distributions that are used to analyze wind in literature are parametric in nature, 

although there exist non-parametric methods, such as spline-based, kernel-based methods, etc., 

that are well documented in (Munir et al., 2017). However, the non-parametric methods are usually 

complex to implement yet their accuracy is low comparable to the parametric methods. This work 

focused on two parameter Weibull PDF, which is a parametric distribution. Parameter estimation 

methods that are commonly employed to estimate Weibull parameters are discussed below 

Nil et al. (2020) investigated different methods used for Weibull parameters to establish the most 

effective method. The methods that were studied are inclusive of Maximum Likelihood Estimate 

(MLE), Method of Moment (MOM), Least Square Method (LSM), Method of Logarithmic 

Moment (MLM), Percentile Method (PM), and L-Moment method (LM). These methods were 

then compared to Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE) 

methods. The results indicated that for large sample data sizes, MLE is the best in estimating 

parameters for two parameter Weibull PDF, followed closely by LM. Among the numerical 

methods, the MLE method estimates the parameters more efficiently than its counterparts listed 

previously. It is the primarily used technique to estimate Weibull parameters. Therefore, the MLE 

technique was employed in this research to estimate the parameters. 

2.4 Performance indicators 

Performance indicators are methods used to assess the suitability of a given wind distribution 

estimation method used in the analysis of WSD and therefore considered as error estimation 

methods. With the aid of these methods, one can know how well the fitted distribution describes 
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the actual data distribution. RMSE and coefficient of determination (R2) were employed by 

(Cherinet et al., 2020) to assess the suitability of parameters obtained via MOM, Empirical Method 

(EM), and Graphical Method (GM). Parameters were obtained from Rayleigh and W2 

distributions. The analysis also revealed that the multiple criteria approach in analyzing wind data 

is plausible and gives better insights of the actual wind regime. It was also noted that RMSE gives 

better insight into judging the statistical methods used, while (R2) gives better insight into power 

production. In this research, RMSE and R2 was used as accuracy judgement criteria. 

2.5 Continuous Wavelet Transform (CWT) as applied to wind data  

 Decomposition of signals using CWT technique requires a basis wavelet upon which other waves 

can be generated via transformation called mother wavelet. There are several mother wavelets that 

one can choose from; the choice depends on the signal to be processed. Some of the mother 

wavelets applicable to wind decomposition are presented below. 

Antonio et al. (2019) used Morlet wavelet decomposition technique to detect missing data from 

time series wind data measured for a period of 11 years in 10 min interval. The researchers then 

explored various techniques such as moving average to fill the identified missing data. To evaluate 

the best data filling technique, Morlte wavelet decomposition analysis was employed. The 

scalograms generated from the decomposition of wind data have the ability to unveil the 

underlying seasonal cycles present in the data. Consequently, any anomalies within these cycles 

can be readily identified through pattern breaches that maybe observed in the scalogram 

plot. When Morlet wavelet is used to extract seasonal features of data, the central frequency is 

normally set between 5-6 Hz. At this range, a good balance between frequency and time resolution 

can be achieved (Antonio et al., 2019). 



24 
 

The same signal decomposition technique was employed by (Tian et al., 2017) to study oscillation 

characteristics of wind speed, temperature and solar radiation. The researchers used Morlet 

wavelet decomposition to identify the periodic behavior of the aforementioned weather elements. 

The researchers demonstrated that the technique is capable of detecting seasonal patterns from the 

three data sets and identify the correlation pattern among the three elements by comparing the 

scalograms plotted for each element coupled with cross wavelet transformation technique. Morlet 

wavelet have also been reported to be applicable in extraction of inherent seasonal or periodic 

properties of signal in other related fields such as study of wind induced ocean waves, geophysical 

time series signals, thunder-storm induced mean wind velocities etc (Elsayed et al., 2004). In 

general, when periodic or seasonal inherent properties of a signal are needed, then Morlet wavelet 

decomposition is the best technique to employ with central frequency in the range of 5-6 Hz.  
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CHAPTER THREE 

METHODS 

3.0 Introduction 

In this chapter, methods that were employed during the research process have been discussed. The 

techniques include; Polar chart analysis, two parameter Weibull PDF analysis, Maximum 

likelihood estimate, R2 & RMSE, statistical mean, wind speed extrapolation law and Morlet 

wavelet transformation. The methods were used for; wind direction analysis, wind speed 

characterization and wind power density estimation, parameter estimation, error analysis, mean 

wind speed calculation, wind speed extrapolation and wind speed spectrum analysis respectively. 

All the methods were executed in MATLAB program version R2018a. 

3.1 Data Acquisition and Filtering  

 

Decadal (2011 to 2021) Wind Speed Data (WSD) measured at 10 m height and Wind Direction 

Data (WD) for the Narok weather station in Narok county was obtained from Kenya 

Meteorological Department station headquarters in Nairobi, Kenya. Narok county is located in 

Rift Valley region as indicated in figure 1, the county boarders Tanzania to the south, Nakuru to 

the North and Kajiado county to the East. Narok weather station on the other hand is bound by the 

geographical coordinates 1.0918° S, 35.8498° E.  

The data was inspected for invalid entries such as non-number entries, empty cells, negative 

entries, and entries more than 25 m/s (exaggerated entries). Wind speeds exceeding 25 m/s are 
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considered invalid since most wind turbines are designed to cut-out at this wind speed to avoid 

turbine damage due to stormy winds. All the anomalies that were found in the data were counted 

and their proportion with respect to the entire data set calculated. The percentage was about 

0.0033% which is way below the allowable maximum percentage of 3%. The threshold missing 

data is set at less than 3% to ensure the accuracy of the obtained result. If a large number of data 

points are missing, then the accuracy of the results is compromised. For instance, wind power 

density is proportional to the cube of wind speed. If a slight error is introduced by a large number 

of missing data points, this error will be cubed in the final results.  

To remove the anomalies, the data was then subjected to digital filtering on the MATLAB platform 

following the procedures given below.  

i. The multidimensional matrices of the wind speed and wind direction data were 

converted to n by 1 matrix and the matrices were assigned to A and WD respectively. 

Where A is a matrix containing wind speed, while WD is a wind direction matrix. A 

and WD have the same dimensions and number of elements since wind speed and wind 

direction are measured simultaneously. 

ii. Each data entry in A or WD corresponds to a specific date and time the data entry was 

recorded. Therefore, A and WD could further be subdivided into corresponding data 

sets of hour, month and year designated as pointer matrices B, C, and D respectively. 

Figure 2 shows a snapshot of how these pointer matrices were constructed whereby in 

the first column we have the date that the wind speed and wind direction were recorded; 

the second column gives the time; the third column shows the month; the fourth column 

shows the year. Matrix A is for wind speed, matrix B is for time, matrix C is for the 

month, matrix D is for the year and matrix WD is for Wind Direction. 
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Figure 2: Snapshot illustrating how matrices A, WD, B, C and D were made. 

 

iii. The wind speed matrix A was checked for invalid entries (NaNs, negatives, empty 

entries and entries exceeding 25 m/s), all the invalid entries were counted and the 

percentage contribution of the invalid cells were calculated. The percentage was less 

than the 3 % therefore the filtration proceeded to the next step. 

iv. Where invalid entries occurred consecutively more than six times in a row in A, indices 

corresponding to the consecutively occurring invalid entries were identified. The 

entries corresponding to the identified indices in matrices A, WD, B, C and D were 

deleted to preserve the dimensions of the matrices and the corresponding times. 

Deleting all the entries that occurred more than six consecutive times preserves the 

accuracy of the data. For example, a day having more than six invalid entries translates 

to more than 25% of data recorded on that day being invalid. Which when not taken 

care of will eventually affect the overall accuracy of the data.  
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v. The remaining invalid entries in A were then substituted through moving average 

technique. The entries that exceeded 25 m/s were set to 0 m/s. Even though there were 

virtually no wind speeds observed that exceeded 25 m/s. Wind turbines don’t generate 

any power beyond the cutout wind speed. Most wind turbines have their cutout wind 

speed at 25 m/s. Therefore, it is reasonable to set all wind speeds >25 m/s to zero since 

power generated at such speeds is zero. 

vi. The steps above leave matrix A completely filtered while WD may still have some 

anomalies. To take care of the remaining anomalies in WD, the manipulated matrices 

A, WD, B, C and D are then subjected again to steps iii-v with WD as the reference 

matrix instead of A. That is, WD and A will exchange roles (positions) so that the 

anomalies will now be NaNs, negatives, empty entries and entries exceeding 360°. 

Since direction data cannot exceed 360°, any entry exceeding this value must be treated 

as an anomaly. All the entries that exceeded 360° were set to 360° even though there 

were virtually no such entries in the data. All other invalid entries were similarly filled 

using moving mean technique. 

Step i-vi above were executed in MATLAB through scripting, the general logic that were used to 

develop the scripts for data filtration have been displayed in the appendix. 
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3.2 Wind direction determination 

The dominant wind direction was determined from filtered data obtained in 3.1 above. Filtered 

wind speed data and wind direction data were used to prepare frequency distribution table as 

illustrated in Table 2. Wind direction data was subdivided in an interval of ten to capture the 

possible wind directions from the wind data as much as possible. This is because the instrument 

that was used to take wind direction measurements rounded off the wind direction data to the 

nearest tens according to the nature of data that was provided. All the data entries were recorded 

to the nearest tens. Wind speed was then grouped in intervals of 5 m/s just for convenience so that 

the polar chart wouldn’t be crowded. The frequency distribution table was used to plot the polar 

charts. Equation 3.1 was used to convert frequencies of each group into percentages.  Similarly, 

all the calculations and polar charting were done in MATLAB environment. The corresponding 

flowchart that guided scripting for this analysis has been displayed in the appendix. 

 

Table 2: Illustration of how the frequency distribution of the wind direction verses wind speed 

was done 

Direction category Number of observations per category 

 0-5 (m/s) 5-10 (m/s) 10-15 (m/s)⋯ 

0-10 f1 f2 f3 

11-20 f4 f5 f6 

21-30 f7 f8 f9 

⋮ ⋮ ⋮ ⋮ 
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%𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑓𝑖

∑ 𝑓𝑖
𝑛
𝑖

× 100%                                                                                                                  (3.1) 

 

3.3 Mean wind speed and standard deviation 

Mean wind speeds for Narok County that were established include; hourly, monthly, and annual 

mean wind speed. Hourly mean wind speed was found by averaging all the wind speed 

observations that occurred for each hour of the day over the entire period the data was collected to 

come up with a single value for each hour of the day. This analysis resulted into 24 values which 

were then plotted to come up with diurnal mean wind speed variation chart. Monthly mean wind 

speed was found for each month of the year by averaging all the observations that occurred in each 

month of the year. Total of twelve values were yielded that corresponded to all the months of the 

year, these values were then plotted on a bar graph to depict monthly mean wind speed variation 

of the year. Annual mean wind speed was taken to be the average of all the observations recorded 

over the entire period, this yielded a single value. The formula for calculating the mean wind speed 

has been generalized as in equation 3.2.  

𝑣̅ =
1

𝑛
∑ 𝑣𝑖

𝑛
𝑖                                                                                                                             (3.2)           

𝑣̅  is the mean wind speed; 𝑣𝑖 wind speed, and 𝑛 is the number of observations within the period. 

The standard deviation in diurnal and monthly mean wind speeds on the other hand was calculated 

using equation 3.3.  

𝜎 = √
∑ (𝑣𝑖−𝑣̅𝑖)2𝑛

𝑖

𝑛
                                                                                                                         (3.3) 
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𝜎 is the standard deviation, 𝑣̅  is the mean wind speed,  𝑣𝑖 is the wind speed, and 𝑛 is the number 

of hours/months/days within the considered period.  

Equations 3.2 and 3.3 were both implemented in MATLAB environment and the corresponding 

flowcharts that guided the implementation are found in the appendices.  

 

3.4 Wind speed variability with a hub height 

Annual mean wind speed obtained above was used to calculate wind speed variation according to 

hub height varied from 10 m to 100 m by extrapolation. 100 m is the maximum height beyond 

which no meaningful energy can be extracted from the wind. Equation 3.4 was executed to 

accomplish this purpose. A graph of the extrapolated wind speed against hub height was plotted. 

All calculations and plotting were done in MATLAB environment. 

𝑣𝑧 = 𝑣𝑠 (
𝑧

10
)

𝑏

                                                                                                                      (3.4) 

Where 𝑣𝑧 is the extrapolated mean wind speed at a given height, 𝑣𝑠 represents mean wind speed 

at 10 m height, z is the height, and 𝑏 = 0.3. The constant b is called wind shear constant and is 

chosen based on the ground characteristics of the area. For areas characterized by small towns, 

suburbs with buildings that are low to medium rising, b is assumed to be 0.3 while cities with high 

rising buildings b is assumed to be 0.4 (Ali et al., 2020; Francisco et al., 2019). Definition of high-

rising building varies in different regions and contexts; however, commonly adopted method of 

definitions is using the number of floors and the actual height of the building. For example, in 

United States, National Fire Protection Association (NFPA) definition code of 2012 categorize 

any building that is taller than 75 feet as high-rising. 75 ft building translates to about 5-7 floors. 

National Building Code (NBC) of India on the other hand categorize any building having more 



32 
 

than four floors which is about 50 ft as high-rising. Narok weather station is located arguably 

within Narok town. Narok town is characterized by shrubs, trees and buildings that are mostly 

below 50 ft tall. Only few buildings have five floors and there’s virtually no building that exceed 

this height. Therefore, it’s reasonable to choose b for Narok as 0.3. 

3.6 Turbulence intensity variation  

Daily (diurnal), monthly, and annual mean wind turbulence intensities were calculated using 

equation 3.5. A graph of wind turbulence intensity against time were plotted for each case. 

Similarly, all calculations were executed in MATLAB software.  

𝐼 =
1

𝑁
(∑ √(𝜎𝑖)2

𝑣̅

𝑁
𝑖 )                                                                                                                     (3.5) 

Where 𝜎 & 𝑣̅ represents standard deviation and mean wind speed, respectively, other terms bear 

their normal meanings.  

3.7 Weibull parameters 

Weibull parameters were obtained using MLE. The inbuilt subroutine (wblfit() ) in MATLAB 

program were used to estimate these parameters. In MLE, the log-likelihood function (which is 

obtained from the likelihood function in equation 3.6) is first obtained, as indicated in equation 

3.7. The function is then partially differentiated with respect to shape and scale parameters which 

are then equated to zero to obtain the shape and scale parameters.  

Likelihood function is obtained by equation 3.6, it represents the maximum probability of all the 

observed wind speeds.  

𝐿(𝑥; 𝜆, 𝑘) = ∏
𝑘

𝜆
(

𝑥𝑖

𝜆
)

𝑘−1

𝑒−(
𝑥𝑖
𝜆

)
𝑘

𝑁
𝑖 =1                                                                                               (3.6) 
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ln(𝐿(𝑥; 𝜆, 𝑘)) = 𝑙𝑛 [∏
𝑘

𝜆
(

𝑥𝑖

𝜆
)

𝑘−1

𝑒−(
𝑥𝑖
𝜆

)
𝑘

𝑁
𝑖=1 ].                                                                                (3.7) 

∴ ln(𝐿(𝑥; 𝜆, 𝑘)) = 𝑁𝑙𝑛𝑘 − 𝑁𝑘𝑙𝑛 𝜆 − ∑ (
𝑥𝑖

𝜆
)

𝑘
𝑁
𝑖=1 + (𝑘 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑁
𝑖=1                        (3.8) 

Equation 3.7 is then partially differentiated with respect the parameters 𝜆 and 𝑘 as follows; 

𝜕𝐿(𝑥;𝜆,𝑘)

𝜕𝜆
= 𝛿 =

−𝑁𝑘

𝜆
+ 𝑘 ∑ 𝑥𝑖

1

𝜆𝑘+1
𝑘
𝑖=1 = 0.                                                                         (3.9) 

𝜕𝐿(𝑥;𝜆,𝑘)

𝜕𝑘
= 𝜎 =

𝑁

𝑘
− 𝑁𝑙𝑛𝜆 − ∑ 𝑙𝑛 (

𝑥𝑖

𝜆
) 𝑒𝑙𝑛

𝑥𝑖
𝜆𝑁

𝑖 + ∑ 𝑙𝑛𝑥𝑖
𝑁
𝑖 = 0                                      (3.10) 

From equations 3.9 and 3.10, are then partially differentiated again with respect to 𝜆 and 𝑘 to form 

elements of Jacobian matrix as shown in equation 3.12; 

𝐽 = [

𝜕𝛿

𝜕𝜆

𝜕𝛿

𝜕𝑘
𝜕𝜎

𝜕𝜆

𝜕𝜎

𝜕𝑘

]                                                                                                                                            (3.11) 

The Jacobian matrix formed in 3.11 above can easily be shown to be non-singular and symmetric 

as detailed in (Shaima & Iden, 2021), therefore, equation 3.12 follows. 

[
𝜆𝑖+1

𝑘𝑖 +1
] = [

𝜆𝑖

𝑘𝑖
] − 𝐽−1 [

𝛿(𝜆𝑖)
𝜎(𝑘𝑖)

]                                                                                                              (3.12) 

Hence; 

𝜆 = (
1

𝜆
∑ 𝑥𝑖

𝑘𝑁
𝑖=1 )

1

𝑘
                                                                                                                       (3.13) 

𝑘 = [
∑ 𝑥𝑖

𝑘𝑙𝑛𝑥𝑖
𝑁
𝑖=1 −𝑙𝑛𝑥̅̅ ̅̅̅

ℎ ∑ 𝑥𝑖
𝑘𝑁

𝑖=1

]                                                                                                                  (3.14) 
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Once equation 3.14 is solved via iteration methods, the solution obtained is substituted back to 

equation 3.13 to obtain the second parameter. The above was implemented in MATLAB, refer to 

appendix to see the flowchart associated to the implementation. 

3.8 Measured and estimated Weibull densities 

The next task was to estimate Weibull probability densities by substituting the obtained parameters 

and observed wind speeds into the Weibull PDF in equation 1. Then, actual probability densities 

were calculated by grouping the filtered mean wind speed data into a frequency distribution table 

similar to that in Table 2. The interval of each wind speed group was set at 0.5 m/s. This interval 

size was chosen for convenience, as it would result in 50 bins (groups), which provided a better 

visualization of the data. Then frequency of each category was substituted into equation 3.15 to 

calculate the actual probabilities. The estimated and actual probability densities were then plotted 

on the same axes with wind speed being on the x axis while probability densities on the y axis. 

Similarly, all the calculations were caried out in MATLAB environment. Refer to appendix to 

view the flowchart that guided the implementation. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦  (𝑓𝑟𝑒𝑞𝑢𝑛𝑐𝑦)

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
                      (3.15) 

3.9 Wind speed carrying maximum energy and most probable wind speeds  

The most probable wind speed and wind speed carrying maximum energy were obtained using 

equations 3.16and 3.17. Equation 3.18 was used to calculate maximum wind power of the selected 

site (Mekalathur et al., 2019).  

𝑣𝑚𝑝 = 𝑐 (
𝑘−1

𝑘
)

1/𝑘

                                                                                                                       (3.16) 

𝑣𝑚𝑎𝑥𝐸 = 𝑐 (
𝑘+2

𝑘
)

1/𝑘

                                                                                                                       (3.17) 
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Where; 𝑣𝑚𝑝, 𝑣𝑚𝑎𝑥𝐸  ,𝑘 𝑎𝑛𝑑 𝑐 represents most probable wind speed, wind speed carrying 

maximum energy, shape and scale parameters.  

3.10 Wind power densities  

Monthly and overall mean wind power densities were calculated using equation 3.18 in MATLAB 

environment. Wind power variation at different heights was assessed through extrapolation using 

equation 3.18 but with extrapolated values of c and k calculated using equations 3.19 and 3.20 

respectively. Most probable wind power density of the other hand was calculated using equations 

3.21 (Daoudi et al., 2019). 

𝑃̅ =
1

2
𝜌𝑐3Γ(

𝑘+3

𝑘
)                                                                                                                                     (3.18) 

𝑐𝑧 = 𝑐 (
𝑧

10𝑚
)

𝑏

                                                                                                                                  (3.19) 

𝑘𝑧 =
𝑘

1−0.088ln (𝑧/10)
                                                                                                                               (3.20) 

𝑃 =
1

2
𝜌𝑣𝑚𝑝̅̅ ̅̅ ̅3

                                                                                                                                (3.21)     

All terms in equations 3.18-3.21 have their normal meanings as earlier defined. 

3.11 Wind speed spectral analysis using CWT 

CWT, defined in equation 1.4 with Morlet as the mother wavelet defined in equation 1.5, was used 

to mine the spectral behavior of the wind regime of Narok County. The scale range was defined to 

be between 1 to 256. This range provided a good trade-off between the frequency resolution and 

localization of the frequencies in time. Moreover, the scale is capable of capturing both low and 

high frequencies in a wind regime. For example, lower scales correspond to higher frequencies as 
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dictated by equation 3.22.  Each scale chosen corresponds to a specific wavelet frequency as 

implied by equation 3.22, the contribution of that wavelet in the signal is computed by combination 

of equation 1.4 and 1.5. The output of equation 1.4 is just coefficient which quantifies how much 

a wavelet (wind speed of given frequency cycle) of a specific frequency is present in the wind 

regime over time. Since the data was an hourly data, the time interval was adopted to be 1.  After 

decomposition, the frequencies were plotted against time and the power of each frequency in the 

signal was denoted by the color in the chart. Bright yellow being the highest power and dark blue 

being the lowest power. Similarly, signal decomposition using CWT was performed in MATLAB 

environment. 

𝑓(𝑡) =
1

log (𝑎)𝑑𝑡
                                                                                                                                             (3.22) 

Where, 𝑎 = 1 𝑡𝑜 256 & 𝑑𝑡 = 1 

3.12 Error approximations (PDF performance analysis) 

The performance of two parameter Weibull PDF was judged by two methods, namely; RMSE 

defined by equation 3.23 and R2 defined by equation 3.24. 

𝑅𝑀𝑆𝐸 = √
∑ |𝑦𝑖 −𝑦𝑖̂|2𝑁

𝑖

𝑁
                                                                                                                   (3.16) 

𝑅2 = 1 − (
∑ |𝑦𝑖 −𝑦𝑖̂ |2𝑁

𝑖

∑ |𝑦𝑖−𝑦̅|2𝑁
𝑖

)                                                                                                                 (3.17)                                                                                                                

Where 𝑦𝑖 ,𝑦𝑖̂ ,𝑎𝑛𝑑 𝑦̅ represent actual, predicted and average value respectively. N stands for 

number of observations. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction 

In this chapter, the results that were obtained from the analysis are presented alongside their 

interpretations and discussions 

4.1 Wind direction 

Figure 3 shows wind direction at different wind speeds for Narok weather station and it environs. 

The predominant wind direction was found to be East (E). From the figure, about 25% of the time- 

 

Figure 3: Polar chart demonstrating wind directions over different wind speed ranges for Narok 

weather station. 
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 wind was blowing from the east direction. These observations are consistent with the ones made 

by Weather spark Kenya. The published information in the organization’s website confirms that 

wind predominantly blows from the east (weatherspark.com, n.d.). This observation might be 

attributed to the fact that Narok is bordered to the east side by colder regions such as Limuru in 

Kiambu county and to the west by warmer regions such as Migori county. Moreover, Narok 

typically experiences higher temperatures compared to the regions neighboring it to the east as 

aforementioned. This temperature difference leads to air density gradient since the air molecules 

to the eastern side would be typically denser due to colder temperatures as compared to the western 

side which is characterized by warm temperatures. The density gradient will therefore trigger mass 

flow of air molecules from the east towards the west, which explains why the predominant wind 

direction is east. From the same figure, it is evident that some of the winds were originating from 

generally North West side. These winds are mainly originating from Mau Forest which is equally 

colder compared to other regions of Narok especially around the vicinity of Narok town where 

Narok weather station is situated. Wind blowing from the east is dominated by wind speeds ranging 

between 0 m/s to 5 m/s. This implies that domestic scale wind turbines that have cut-in and rated 

wind speeds to be ≤ 5 𝑚/𝑠 with power rating <100 kW should be oriented facing the east direction 

to operate optimally. For grid-tie installation wind turbines which have their cut-in wind speeds 

more than 5 m/s and rated power >100kW should be installed facing NW direction with the ability 

to yaw about an angle of at least 90° according to change in the wind direction. This is because 

most wind speeds ranging between 5-15 m/s are predominantly from the directions bound by North 

and West directions quadrant as evident in Figure 3. In general, wind speed directions of Narok 

county ranges from East to West in an anticlockwise direction as most (about 80%) of the polar 

chart arms lie within the area. Therefore, wind turbines with the ability to yaw about 180° is the 
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most suitable turbines for wind farms in the area, approximately 80% of all the wind speed ranges 

will be captured as indicated in Figure 3.  In Narok weather station and its vicinity, directionally 

static wind turbines are not recommended since they would only extract wind power blowing from 

the direction along which the turbine is oriented, therefore extracting only a portion of the available 

wind power.  

 4. 2 Mean wind speeds and standard deviation 

4.2.1 Hourly mean wind speed  

Figure 4 displays mean wind speed evolution with respect to the hour of the day at 10 m height. 

 

Figure 4: Diurnal mean wind speed variation for Narok weather station. 

Figure 4 displays a mirror line at midday, the curve is almost symmetric about the noon hour where 

the maximum mean wind speed of about 6.5 m/s is registered. Mean wind speed generally ranges 

between 2.7 m/s and 3.0 m/s from 2100-0430 hrs. Wind speed then rises rapidly as from 0430 hrs 

to the maximum daily mean wind speed at around 1200 hrs. Wind speed then falls rapidly as from 

1200 hrs to low wind speeds below 3.0 m/s at 2100 hrs. The profile suggests that wind regime in 
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Narok is correlated to the ambient temperature as was seen in section 4.1. Wind speeds are low 

and almost constant during low temperature hours (2100-0430hrs) while wind speeds are higher 

during high temperature hours (0430-2100hrs). Wind speed peaks at noon because typically, this 

hour is associated with highest temperature as opposed to midnight when wind speed is lowest and 

associated with the lowest temperature. At higher temperatures, the air density gradient steepens 

leading to higher wind speeds blowing over Narok region and reverse is also true. The results 

further suggest that domestic wind turbines, which are turbines whose rated power are <100 kW 

installed around Narok weather station will generate power all through the day. This is because 

most domestic scale wind turbines have cut-in wind speed as low as 1.5 m/s to 2.0 m/s (Oluseyi et 

al., 2019) and the lowest occurring hourly mean wind speed is about 2.7 m/s which occur at 

midnight. Most utility scale wind turbines, which are wind turbines with rated power >100 kW, 

on the other hand will generate power as from 0430hrs to around 2100hrs since the cut-in wind 

speed of most of these wind turbines ranges from 3.0 m/s to 5.0 m/s (Oluseyi et al., 2019). The 

suitable time for carrying out daily routine maintenance for utility scale wind turbines should be 

done between 2100-0430 hrs. Between these hours there is little to no wind power being generated 

by the turbines owing to the mean wind speeds being below the cut-in wind speeds.  

 

4.2.2 Monthly wind speeds 

Figure 5 indicates that mean wind speed distribution over the months of the year has two peaks.  
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Figure 5: Mean wind speed variation over the months of the year for Narok weather station. 

The peaks occur in the months of march and October. The two months are also characterized by 

higher temperatures than other months of the year. Therefore, the higher wind speeds might as 

well be attributed to the high temperatures as seen earlier.  The wind regime profile in the figure 

is almost symmetric about the sixth month of the year. The profile is similar to that of a wave with 

an inverted trough; the two peaks make up a cycle (wave).  This imply that the wind regime of 

Narok has a period of 12 months, that is, the same pattern repeat itself after every 12 months of 

the year. October and March are the windiest months of the year. Wind power installations in 

Narok are likely to generate substantial electrical power around these months of the year (Feb-

May and Jul-Nov). Figure 5 also shows that all the months of the year have mean wind speeds 

above cut-in wind speed required for most wind turbines regardless of the scale classification of 



42 
 

the wind turbines. All the months have mean wind speeds above 3.5 m/s which is good enough for 

any meaningful power extraction from the wind by the turbines. This also implies that wind regime 

in Narok is classified as the gentle breeze on a wind scale, since all mean wind  speeds fall in the 

range of 3.5 m/s to 5.0 m/s (Salvação & Guedes, 2015). It implies that, wind would have significant 

effect on trees and light loose flags. Flags and some trees would be swayed with their heads clearly 

aligning along the wind direction. Average human does not require much work to walk against 

such winds (Gov, 2022). The wind regime at this range does not pluck off leaves of trees and it’s 

only capable of carrying fine dust particles with it. This explains why most dust particle deposits 

on outdoor surfaces around Narok station are mostly fine textured .  

4.3 Mean wind speed variation with height 

Mean wind speed increases with height as evident in Figure 6. The increase in mean wind velocity 

with height might be attributed to less physical hindrances to the flow of air as height increases.  
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Figure 6: Mean wind variation with respect to hub height for Narok weather station  

The maximum average wind speed that is likely to occur around Narok station at the maximum 

height (100 m) is about 8.5 m/s as observed in Figure 6. It is also evident that wind speed vertical 

variation follows a typical velocity profile of a fluid flowing over a surface with some degree of 

resistance to the flow of the fluid which is a similar observation reported by (Boming et al., 2023). 

Wind velocities are lowered as we approach the ground as indicated by the trend observed in the 

figure due to the influence of friction. The friction is greatest at the ground due to vegetations, 

constructions and generally rough rugged terrains. It can be deduced that hub heights should be as 

a high as possible but less than 100 m to tap the maximum mean wind speeds occurring at heights 

above 10 m. The extrapolated mean wind speeds also show that Narok experiences moderate wind 

breeze at heights ≥ 20 𝑚. Above 20 m height, the wind speed ranges from 5.5 m/s to 8.5 m/s 
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which is classified as moderate wind speeds. The mean wind speed range is classified as moderate 

wind breeze. Effects of moderate breeze on trees and flags are more apparent compared to light 

breeze discussed earlier. Moderate breeze sways almost all tree heads, even the larger ones. An 

average person requires much work to move against the wind. Usually, it is almost impossible to 

use an umbrella in this wind regime. Therefore, wind turbines having hub heights greater than 20 

m, should be equipped with support structures that are able to withstand the significant pressure 

that would be exerted by the wind on the turbines. For instance, wind pressure is typically given 

by equation 33. The equation imply that wind pressure is directly proportional to the square of 

velocity, hence any slight increment in velocity leads to a significant increase in pressure. Since K 

is a location specific constant that is dependent on shape of the surface and the aerodynamics 

properties of the location (Begum et al., 2018). 

𝑃 = 𝐾𝑣2                                                                                                                                          (4.1) 

Where, K and v denote location specific constant and mean wind speed respectively. 

4.4 Wind turbulence intensity and wind turbine stalling time 

 

4.4.1 Daily wind turbulence intensity 

Wind regime in Narok at 10 m turbine height is mostly turbulent over the entire day. This is 

because all turbulence intensities recorded were above 0.25 as observed in Figure 7, 
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Figure 7: Wind turbulence intensity over the hours of the day for Narok weather station. 

 according to (John & Tony, 2015), any turbulence intensity exceeding 0.25 is considered a 

turbulent wind regime. High turbulence intensities observed might be arising from shear-generated 

turbulence due to drag.  Layers of air blowing above 10 m height have faster speed than the layers 

of air that blows below 10 m. The upper layer is dragged by the lower layer at the boundary 

separating the two layers due to the difference in speed. This causes wind shear which in turn 

creates wind turbulence. High turbulence intensities might also be attributed to high surface 

roughness of the area. Narok station and its environs is generally associated with rugged terrains, 

vegetation and buildings which might deflect the flow of wind thus creating wind turbulences. 

Moreover, rugged terrains, vegetation and buildings increases the Reynolds number of the flowing 

mass of air to higher values exceeding 2300, which typifies fully developed turbulent wind flow. 

Therefore, it is reasonable to observe wind regime with high turbulent intensities around Narok. It 

should be noted that low wind speeds are also associated with high turbulence intensities since the 

turbulence intensity is indirectly proportional to the wind speed as suggested by equation 3.5 in 

Chapter three. The results suggest that wind turbines suitable for the area are those that are capable 
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of handling turbulent wind regimes. The most turbulent hours occur between 1800 to 0400 hrs. 

During these hours, wind turbines in operation experience a lot of mechanical stress due to gravity 

loading and turbulent winds. Wind turbines not designed to operate under turbulent wind regimes 

will most likely be stalled during these hours. Between 0700 to 1400hrs wind turbines will operate 

smoothly since during these hours wind regime is almost steady as indicated by the almost constant 

turbulence intensities between the period. The turbulence intensities are below 0.5 during the hours 

lying in the range 0700hrs to 1400hrs. 

  

4.4.2 Turbulence intensity evolution over the year 

Figure 8 indicates that most wind turbulence intensities are greater than 0.25 in all the months-  

 

Figure 8: Turbulence intensity evolution over the year for Narok weather station. 
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of the year, therefore, the wind regime in Narok is turbulent all through the year. The turbulence 

intensities are almost constant over the year except for the months of March, April, November and 

December which appear to be the most turbulent months of the year as evident in Figure 8. The 

standard variation of the monthly turbulence intensities is ~0.037 which translates to coefficient 

of variation of ~5.8%. This implies that the turbulence intensities are varying by only 5.8% from 

the mean value (about 0.64) throughout the year. Therefore, it is possible to predict the expected 

monthly stress related to turbulence intensity that the turbines would be subjected to using the 

average turbulence intensity of 0.64 as the reference. Small variation of turbulence intensities from 

the mean value suggests that the main cause of wind turbulence in Narok is the generally rugged 

terrain as suggested earlier and the terrain remains pseudo-constant for a long time. Therefore, it 

is logical that the turbulence intensities will also remain almost constant throughout the year. The 

slight variations observed in Figure 8 might be due to other characteristics inherent in the wind 

itself like the wind speed. 

The results further affirms that wind turbines that operate within 10 m heights in Narok should 

be designed to handle turbulent wind regimes. From the results, it can be deduced that the most 

suitable time to conduct scheduled annual wind turbine maintenance is the month of December. 

The month is characterized by high wind turbulence intensities in addition to low wind speeds as 

discussed previously in section 4.2.2. These characteristics make the month of December the 

worst month of generating wind power as there will be a lot of damage to the wind turbine due to 

high wind turbulences with the least power output.  

4.5 Weibull parameters 

Mean and monthly Weibull parameters have been summarized in Table 3. The ‘mean’ below the 

Dec row is the scale and shape parameters over the entire sampling period. The highest scale 
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parameter was registered in the month of October (5.4 m/s), followed by March and September 

both at 5 m/s. The results indicate that during these months, wind speeds are more varied and cover 

a wider range than other months of the year. This wider range of wind speeds suggests that there 

are more occurrences of higher wind speeds compared to other months of the year, resulting to 

higher average wind speeds. Therefore, the average wind speed values in the months of October, 

March and September will be typically higher as confirmed in Figure 5. On the other hand, the 

least scale parameters occurred in the months of June and December hence monthly mean wind 

speeds are least since wind speed range coverage is least during these months.  

There is little variation in shape parameters over the months of the year, shape parameter ranges 

from 1.4 to 1.7 and the standard deviation of the shape parameters is ~0.09 which corresponds to 

a coefficient of variation of ~0.059. Therefore, there’s only ~5.9% variation of the monthly shape 

parameters from the mean shape parameter. All the shape parameters are lying within the range 

1<k<2. This observation implies that, in all the months, there’s high probability of low wind speeds 

occurring at 10 m height. Any mean wind speed <5.5 m/s is considered low since moderate wind 

speeds starts from 5.5 m/s. This affirmation is consistent with monthly mean wind speeds seen 

earlier in Figure 5 which showed that there was no single month that had a mean wind speed greater 

than 5.5 m/s.  
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Table 3: Weibull Parameters c and k over the months of the year at 10 m height 

Month c (m/s) K 

Jan 4.3 1.6 

Feb 4.7 1.6 

Mar 5 1.4 

Apr 4.8 1.4 

May 4.8 1.5 

Jun 4.2 1.6 

Jul 4.5 1.7 

Aug 4.8 1.6 

Sept 5 1.6 

Oct 5.4 1.6 

Nov 4.8 1.4 

Dec 4.2 1.4 

Mean 4.7 1.5 
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4.6 Most probable wind speed and wind speed carrying maximum energy 

Wind regime around the vicinity of Narok station has almost constant most probable wind speed - 

 

Figure 9: Most probable wind speed and wind speed carrying maximum energy for Narok weather 

station  

as seen in Figure 9 throughout the year. The bars illustrating most probable wind speed are almost 

the same height which suggest an almost constant most probable wind speed. Almost all the 

months had most probable wind speed above 2.0 m/s. The observation suggests that, at any given 

month, wind blowing at approximately 2.0 m/s is likely to be observed. Therefore, throughout the 

year, at least wind classified as light wind breeze occur around Narok weather station. The results 

also imply that, wind turbines having cut-in wind speed <2.0 m/s are likely to generate power 

through the year without stalling due to their low threshold wind speeds. From the figure, wind 

speeds carrying maximum energy are always higher than most probable wind speed as expected. 

This category of wind speeds varied from 7.0 m/s to about 9.0 m/s at 10 m height. Therefore, wind 

turbines to be installed at 10 m height should have their rated wind speed within 7.0 m/s to 9.0 m/s 
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for maximum power extraction. Turbines’ wind speed ratings should be matched with the wind 

speed carrying maximum energy for optimal wind power extraction as pointed out by (Djamal et 

al., 2017).  

4.7 Measured and estimated wind speed probability and cumulative distribution densities 

Figure 10 displays the comparison between the actual (histogram) and estimated (line curve)-  

 

Figure 10: Mean wind speed probability distribution for Narok weather station. 

wind speed probability distribution densities. The two distributions are not exactly matching; 

however, the profiles are generally similar. To clearly show the similarity of the Weibull PDF to 

the actual wind speed probability distribution, estimated and actual cumulative probability 

distribution curves have been presented in Figure 11. 



52 
 

 

Figure 11: Mean wind speed cumulative probability distribution for Narok weather station. 

 The figure clearly shows the estimated cumulative probability distribution follow the same trend 

as the empirical counterpart. The similarity of the actual and estimated probability density 

distribution implies that the wind regime generally follows two parameter Weibull distribution. 

However, this assertion will be confirmed analytically via PDF fitness evaluation as presented in 

4.8 section. Figure 11 also shows that the probability of wind speeds not exceeding 2 m/s and 3 

m/s is 0.25 and 0.35 respectively. Therefore, domestic scale wind turbines (rated power <100 kW) 

with cut-in wind speeds ≥ 2 m/s have 75% chance of generating power while grid-tie wind 

turbines (rated power >100 kW) with cut-in wind speed ≥ 3 m/s have 65% chance of generating 

power in Narok at 10 m.  
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4.8 Evaluation of Weibull fitness in fitting the wind regime 

The R-squared value for the fit was found to be 0.942 while RMSE registered 0.0684. Based on 

the goodness of fit results (R2 and the RMSE values), Weibull distribution satisfactorily fits the 

wind speed regime of investigated area. The results imply that power densities estimated via 

Weibull PDF, will be slightly under/over estimated by about 6% in general based on the obtained 

error. This error should be taken into account during an actual sizing and design of wind power 

plant to be installed in Narok county. 

4.8 Wind speed frequency spectrum 

Figure 12 shows the spectral characteristics of the wind regime blowing over Narok station and-  

 

Figure 12: Time-frequency characteristics of the wind regime in Narok weather station displayed 

in a spectrogram. 
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its vicinity. The frequency spectrogram in Figure 12 shows the frequency-time distribution of 

the wind data recorded over a period of 11 years. The color of each point in the plot represents the 

power of the wind signal at that particular time and frequency. The dark blue color corresponds to 

the lowest power while the bright yellow color corresponds to the highest power. From the figure, 

there is a frequency band between 0.4 Hz and 0.5 Hz which cuts across all the years that were 

sampled. The band is dominated with periodic signals with a power of ~400. The band indicates 

persistent periodic behavior of the wind regime at the specified frequency ranges (Antonio et al., 

2019). Such behavior may be attributed to consistent diurnal pattern in the wind regime, which is 

influenced by the periodic heating and cooling of the Earth's surface throughout the day. This is 

consistent with the diurnal wind variation discussed earlier where it was shown that , the wind 

regime corresponds to the typical daily temperature variation. Therefore, it can be concluded that 

daily wind behavior in Narok station is mainly influenced by atmospheric oscillations due to 

temperature gradient. Figure 12 can be divided into 10 divisions as shown in Figure 13. 
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 Figure 13: Time-frequency characteristics of the wind regime in Narok weather station displayed 

in a spectrogram (divisions of Figure 12) 

Any two divisions are separated by a transition window that has little or no frequency signals at 

all which are indicated by the dark blue color dominating the windows. All the divisions (a-j) are 

having almost the same distribution of the frequencies within them except for regions b and f which 

have green boarder lines. This suggests that each region is representing a wind cycle and the 

similarity of the frequency shading that occur at approximately equal intervals suggests that the 

pattern repeats itself after every year. When you divide the 10 cycles with the 11 years you get 

about 0.91 cycles/year which can be approximated to 1 cycle/year. This implies that the wind 

regime pattern in Narok have a period of one year based on the forgoing explanation. Windows b 

and f appear to be very different; the two windows generally have low-power frequency signals 

unlike other windows. The two windows suggest an unusual wind regime behavior which might 
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have occurred during the time periods corresponding to the two windows. Such a behavior might 

have resulted from interruptions of the normal climatic weather patterns due to some unusual 

physical process such as interruption in atmospheric pressure and temperature gradient. The annual 

periodic behavior might be affirmed by zooming into any of the region in Figure 13. Figure 14 

displays a magnification of region (a) in figure 13.  

 

Figure 14: Time-frequency characteristics of the wind regime in Narok weather station displayed 

in a spectrogram, this a zoom in on region a of figure 13. 

There seems to be a distribution of frequencies in the entire year with no obvious division as it was 

in Figure 13. The persisting frequency bands observed in figures 12 and 13 are also observed in 

this scenario. The absence of the transition window in the figure further affirms that a full wind 

long-term cycle only occurs after 1 year.  
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In general, the wind regime in Narok has got both diurnal and annual periodic behavior according 

to the observation explained above. This might be good news to potential wind power investors 

around the area because of an averagely consistent wind pattern. Such a pattern implies an almost 

predictable power generation pattern; therefore, future power plan can easily be made. For 

example, load matching vis a vis power generation can be made with a significant degree of 

confidence. 

4.9 Wind Power Density 

4.9.1 Monthly mean wind power density 

Monthly mean wind power density has been summarized in Figure 15. Wind regime in Narok  

 

Figure 15: Mean wind power density over the months of the year for Narok weather station at 10 

m height. 
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has got mean wind power density higher than 100 W/m2 for nearly all the months of the year. Only 

in the months of January, June and July mean power densities less than 100 W/m2 were recorded. 

The annual mean wind power density that was recorded is approximately 126 W/m2 which lies 

between 100 W/m2 and 160 W/m2. The results imply that wind power of the area belong to the 

class 2 wind power at 10 m anemometer height based on classification given by Heni et al. who 

showed that wind power density lying in the range 100 W/m2 and 160 W/m2 is a class 2 wind 

(Heni et al., 2015). Classification corresponds to wind regimes generally having mean wind speed 

lying in the range ≈ 4.4 𝑡𝑜 ≈ 5.1 𝑚/𝑠  and wind power densities in the range 100 − 150 𝑊/𝑚2 

which is consistent with the mean wind speed obtained during the research. Furthermore, the 

results are very close to the approximation by the global Wind Atlas software which showed that 

Narok region is characterized by wind power density of about 107 𝑊/𝑚2  at 10 m height 

(Globalwindatlas, 2023). It is therefore not economically viable to install utility scale wind turbines 

at 10 m hub heights in Narok. Ideally, mean wind power density of an area should be ≥ 200 𝑊/𝑚2  

(Salvação & Guedes, 2015) to achieve economic viability of a utility scale wind power installation.  

However, at height greater than 10 m, the mean power density exceeds the threshold wind power 

density (200 𝑊/𝑚2 ) as explained in section II. 

4.9.2 Mean wind power density variation with height 

Figure 16 displays an extrapolated mean wind power density at various heights. The mean wind-  
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Figure 16: Wind power density variation with height extrapolated from 10 m to 100 m height. 

power extrapolation is shown by the orange curve in the figure. From the curve, the mean wind 

power density exceeds the threshold of 200 𝑊/𝑚2 which is recommended for utility scale wind 

power farm installation, from about 19m height.  Beyond the 19 m height the classification of the 

wind power ranges from class 3 to class 7 depending on the hub height considered. Any area 

having wind regime lying within the classes mentioned is economically viable for wind power 

generation regardless of the scale or type of wind power installation. Based on the extrapolated 

mean wind power densities, utility scale wind power generation in Narok weather station and its 

vicinity would likely be profitable at hub heights higher than 19m. The blue curve on the other 

hand indicates extrapolation of the maximum wind power density likely to occur in Narok at 

various heights. From the curve, wind turbine power ratings at various heights can be determined. 
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The maximum power density occurs at 100 m height which is ~1090 W. This implies that wind 

turbines with power rating of 1090𝜂 𝑊, where 𝜂 is the turbine efficiency, will capture most of the 

wind power at 100 m height. For example, a turbine of 0.5 efficiency will have ~545 W power 

rating. Such a turbine would operate optimally at 100 m height and below. Wind turbines designed 

to operate at higher turbine heights say 70 m can also operate at heights lower that 70 m say 50 m 

and still extract as much power as a turbine designed to work at that height (50 m) would extract. 

However, using higher-heights wind turbines at lower heights wouldn’t be economical. That is, 

rate of return would be low and it would take a long time to break even.  

 

4,9.3 Maximum possible wind power, most probable wind power and mean wind power 

densities comparison  

 Figure 17 displays comparison of maximum, mean and most probable power densities on the-  
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Figure 17: Comparison of the most probable, mean and maximum power densities over the year 

for Narok weather station at 10 m. 

same axes. The arrangement of the power density profiles observed in the figure is almost similar 

to that one of a typical maximum, mean and minimum profiles of a well-behaved data sample. 

Where, the average of maximum and minimum values in a well-behaved data should be close to 

the mean value.  Comparison of the actual mean wind power densities that were obtained against 

the mean densities calculated by averaging the maximum and most probable wind power densities 

is shown in Figure 18. Figure 18 shows a remarkable resemblance between the two mean power 

densities.  

 

Figure 18: Comparison of the actual mean wind power densities and approximated wind power 

densities calculated from averaging the maximum and most-probable wind power densities 

The similarity index of the two data sets in Figure 18 was found to be 0.96 based on R2 analysis 

technique. This value translates to 96% similarity between the two data sets. This striking 

similarity implies that, the most probable wind power density represents the minimum wind power 
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density that one will most likely get from the wind regime in Narok as supported by the observation 

in Figure 17. Furthermore, most probable power densities correspond to most probable wind 

speeds which are generally ranging between 1.6 m/s to 3 m/s. In the context of diurnal wind speed 

behavior in Figure 4, this range of wind speeds is indeed corresponding to the lowest occurring 

mean wind speeds over the day. This further confirms that most probable wind power density is 

indeed representing the lowest wind power density in the context of Narok’s wind regime. 

Therefore, wind power installations whose main objective is to consistently generate a certain 

amount of wind power for most time of the year should have their power rating matched to most 

probable wind power. For example, Figure 19, subplot number 3 shows that most probable-  

 

Figure 19: Sub-plots of Figure 17 
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power densities exceed 5 𝑊/𝑚2 in almost all the months of the year except for the month of 

December. Therefore, wind turbines with power rating of ~5𝜂 𝑊/𝑚2 will consistently generate 

constant power for most time of the year. Note that Figure 19 is just a decomposition of Figure 17, 

this was done for the sake of clarity. 

In cases where the main objective of an installation is to generate as much power as possible, the 

design and wind power farm sizing should be based on the mean WPD coupled with the maximum 

WPD displayed in the Figure 17. Maximum power density occurs in the month of march at 

~475 𝑊/𝑚2 . To extract most of the available power throughout the year at 10 m height, wind 

turbines of ~475𝜂 𝑊/𝑚2 . power rating should be used. The trends in all the plots also suggest 

that most suitable time for wind power installation (in Narok) maintenance is at the start and end 

of the year with a short window at middle of the year. The mentioned periods are characterized by 

low power densities hence shutting down a wind power plant wouldn’t do much harm 

economically and even in terms of total wattage withdrawn from the national grid.  
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CHAPTER FIVE 

Conclusions and Recommendations 

5.1 Conclusions  

 Wind regime in Narok is predominantly blowing from the East direction. The directions of the 

wind regime lie in the upper two quadrants of the Windrose chart bound by East and West 

directions. The wind is characterized by a turbulence intensity of about 0.6 which is above 0.25. 

Therefore, the wind regime is classified as turbulent wind. The annual mean wind speed of the 

wind regime occurring in Narok is about 4.3 m/s. The wind regime blowing over Narok at 10 m 

height can be classified as gentle breeze since most wind speed lie in the range 3.5 m/s to 5 m/s. 

The wind regime in Narok generally follows Weibull probability distribution. The function 

describes the wind regime with an average accuracy of 0.94 and 0.0684 based of R2 and RMSE 

best of fit analysis criteria. The wind regime is characterized by both diurnal and yearly cycle 

periods, that is, the wind pattern repeats itself after every one day and 1 year respectively. The 

available wind power density at 10 m height was found to be 126 W/m2 which is classified as class 

II wind power. The category of Narok wind power ranges from class II to class VII depending on 

the hub height. Therefore, Narok is a viable region for wind power extraction for utility scale wind 

power installations as from the height of 19 m. For domestic scale wind power generation on the 

other is viable throughout as from 10 m height.  

5.2 Recommendations 

The study adopted wind shear constant value for Narok as 0.3 based on physical observations of 

the area and published research papers in peer reviewed journals. Further investigations should be 

conducted to ascertain the true value of the shear constant for Narok which as it stands can only 

be approximated.  
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5.3 Appendices 

This section consists of all the flowcharts that represent the logic that was used in implementing 

various methods in MATLAB environment. All the symbols bear their meaning as declared in list 

symbols and abbreviation of symbols unless stated otherwise in further definitions given in 

statements next to the figure itself. 

Figures 20 and 21 combined represents the logic that was followed to filter wind speed data as 

explained in section 3.1. In the two figures, i denotes the value or magnitude of each data cell while 

N represents the total number of data points. The abbreviation ‘Cal’ means to calculate. 

 

 

Figure 20: Flowchart for filtering wind speed data part I 
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Figure21: Flowchart for filtering wind speed data part II 

Figures 22 and 23 summarize the logic that were employed in filtering wind direction data. All 

symbols bear their normal meaning as earlier defined. 
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Figure 22: Flowchart for filtering wind direction data part I  

 

 

Figure 23: Flowchart for filtering wind direction data part II 

 

 

Figure 24 is the flowchart that corresponds to the method explained in section 3.2 Chapter Three. 

The symbol freq-dist denotes frequency distribution. 
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Figure 24: Flowchart showing the logic for tabulating WSD & WDD and plotting polar chart 

 

 

Figures 25 and 26 correspond to method in section 3.3, std in the figure represents standard 

deviation. 
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Figure 25: Flowchart for determining hourly mean wind speed and standard deviation 
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Figure 26: Flowchart for calculating monthly and annual mean wind speed and standard deviation 

 

Figures 27 and 28 correspond to methods in 3.7 and 3.8 respectively. The abbreviations prob-den 

and cum-prob-den means probability density and cumulative probability density respectively. 
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Figure 27: Flowchart for calculating algorithm parameters k and c 

 

Figure 28: Flowchart showing steps for computing estimated and measured probability and 

cumulative densities of Weibull distribution. 
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Figure 29 is the flowchart used for spectral analysis; it corresponds to method in section 3.11. The 

symbols and cwt and Morlet stand for continuous wavelet transform and Morlet wavelet functions. 

It should be noted that both functions are already built in MATLAB. 

 

Figure 29: Flowchart showing the algorithm that was used for spectral analysis of WSD  
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