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Abstract

In the communication process, a sender encodes a message which is then send through

a communication channel. There could be a barrier in the channel such that the mes-

sage gets distorted before it reaches the recipient. A solution is in the need for con-

struction of more optimal codes for error detecting and correcting. This research fo-

cused on representing the internal structures of groups of extensions using modular rep-

resentation method. Specifically, it examined the maximal subgroups of four groups:

0+
8 (2) : 2, L3(4) : 2, L3(4) : 22 and L3(3) : 2. For each of these groups, detailed anal-

ysis was provided on the irreducible representations of their maximal subgroups, across

varying representation degrees. The key goal was to classify internal structures of the

groups using modular representations method. The specific objectives were to classify

maximal subgroups of the groups of extension , enumerate linear codes from the maximal

subgroups, construct lattice diagrams of linear codes obtained and analyze the proper-

ties of linear codes and designs constructed using the modular representation method.

By decomposing into irreducible constituents, the work uncovered new linkages between

representation theory, finite group extensions, and combinatorial designs. For the group

0+
8 (2) : 2, representations of degree 120, 135, and 960 across multiple maximal subgroups

were explored. Similarly, representations ranging from degree 21 to 336 were analyzed

for the maximal subgroups under L3(4) : 2 and L3(4) : 22. Finally, representations up to

degree 234 were examined among the maximal subgroups under L3(3) : 2. In mapping

these finite groups through their maximal subgroups representations systematically, the

work contributes enhanced understanding of how extended finite groups can be classified

internally based on modular representation structures. Findings fill a gap in current group

representation theory literature related to certain orders of linear groups of extensions.

Outcomes point to opportunities for further exploration into additional families of finite

groups using similar representation mapping techniques. Findings from the research on

this classification of linear codes and designs for error correction gets their applicability

in digital communication, data storage and cryptography.
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Chapter 1

Introduction

1.1 Background of the study

In encoding science, the modular representation approach is a procedure employed to

create error-correcting codes. The technique is founded on the notion of depicting com-

ponents of the code as vectors over a finite field, and then utilizing modular arithmetic

to manipulate these vectors. The process commences by specifying a finite field, typically

GF(q), where q is a prime power. The constituents of this field can be portrayed as inte-

gers modulo q, and arithmetic operations such as addition and multiplication are defined

modulo q. Subsequently, a vector space over the finite field is delineated, with dimension

n. The elements of the code are symbolized as vectors in this space, with each constituent

of the vector being an element of the finite field. The code is then characterized as a sub-

set of the vector space, with a specific quantity of constraints imposed on the vectors to

guarantee that they fulfill the desired error-correcting attributes (Baylis, 1997; Hankerson

et al., 2000; Peterson & Weldon, 1972).

To encode a communication using the code, the message is initially converted into a vec-

tor over the finite field. This vector is then multiplied by a generating matrix, which

is an array with rows that extend the code. The resulting vector is the encoded mes-

sage, which can be transmitted over a noisy channel. To rectify errors in the received

message, the modular representation technique employs the syndrome decoding method.

The syndrome of a received vector is obtained by multiplying it by the transpose of the

generating matrix. If the received vector contains errors, the syndrome will not be zero.

By performing certain operations on the syndrome, it is possible to ascertain which errors

occurred and correct them. The modular representation approach is extensively utilized

in coding theory because it allows for efficient encoding and decoding of error-correcting
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codes, and because it can be easily implemented using digital circuits (Berlekamp, 2015;

Bierbrauer, 2016; Hankerson et al., 2000; Ryan & Lin, 2009).

The modular representation technique is merely one of numerous methods utilized in error-

correcting codes. Its comparison to other techniques is contingent upon the particular

application and requirements. One advantage of the modular representation approach is

that it enables efficient encoding and decoding of codes. The method can be accomplished

using digital circuits, making it appropriate for applications where hardware implementa-

tion is crucial, such as in communication systems or computer memory storage. Another

benefit is that it can generate codes with desirable error-correcting attributes. By metic-

ulously selecting the generating matrix, it is possible to create codes that can rectify a

specific quantity of errors or even detect errors without correcting them. Nevertheless,

the modular representation technique may not be the most suitable option for all appli-

cations. For example, if the code must be highly compact, then alternative methods such

as turbo codes or low-density parity-check codes may be more fitting (Davey & MacKay,

1998; Richardson & Urbanke, 2008).

These codes can achieve similar or even better error-correcting performance with fewer

bits. Additionally, the modular representation method relies on finite fields, which can

have limited size. If the required code length or error-correcting capability exceeds the

size of the available finite field, then other techniques such as algebraic geometry codes

or cyclic codes may be more appropriate. In summary, the choice of error-correcting code

technique depends on the specific requirements of the application. The modular repre-

sentation method is a powerful and efficient technique, but it may not be the best choice

for all scenarios (Baylis, 1997; Berlekamp, 2015; Bierbrauer, 2016; Pham et al., 2011).

The study of finite groups and their representations has broad and deep connections

spanning group theory, combinatorics, coding theory, and number theory. In particular,
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investigating the structure and representations of finite groups of extensions through their

maximal subgroups sheds light on internal classification and links to other mathematical

structures. The origins of finite group representation theory date back to the 19th century

work of Frobenius. Studies on group extensions also have a long history, with foundational

results by Remak, Schur, and others (Berlekamp, 2015; Bierbrauer, 2016; Hankerson et

al., 2000; Sayed, 2016).

More recent works have further explored representations of specific finite groups of exten-

sions and related combinatorial designs (Chikamai, 2012). Specifically, the study centers

on describing the representations of maximal subgroups under four finite groups of ex-

tensions: O+
8 (2) : 2, L3(4) : 2, L3(4) : 22 and L3(3) : 2. By decomposing these complex

finite groups into constituent subgroups and examining their representation structures,

the work links modular representation theory with the classification of group extensions.

The specific representation degrees analyzed across the varying maximal subgroups range

from 21 to 960. Outcomes from the representation mapping enrich understanding of how

extended finite groups can be classified internally based on the irreducible representations

of their building maximal subgroups. The techniques developed expand existing knowl-

edge related to representing certain linear groups of extensions using a modular approach.

Findings also uncover new connections to linear codes and combinatorial designs.

1.2 Basic Concepts

1.2.1 Groups

The theory of groups is essential to this subject, providing the mathematical framework for

studying finite groups and their properties, including group actions, group representations,

and character theory. The symmetric group on a set Ω is the group SΩ containing all

permutations of Ω. A permutation group G on a set Ω is a subgroup of SΩ, and G is

considered transitive on Ω if, for any α, β ∈ Ω, there exists an element g ∈ G such that

the image αg of α under g equals β (Hankerson et al., 2000).
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Definition 1.2.1. Let G be a group and Ω be a set. An action of G on Ω is a function

that associates every α ∈ Ω and g ∈ G with an element αg of Ω such that, for all α ∈ Ω

and all g, h ∈ G, α1 = α, and (αg)h = αgh ( Hankerson et al., 2000). An action naturally

defines a permutation representation of G on Ω, which is a homomorphism ψ from G

into SΩ. Conversely, a permutation representation naturally defines an action of G on Ω

( Ryan & Lin, 2009).

Definition 1.2.2. A collection of bijective transformations on a set Ω that forms a group

under composition is termed primitive if it satisfies two conditions: it acts transitively

on Ω, allowing any element to be mapped to any other, and the only partitions of Ω it

leaves invariant are the trivial ones (either Ω itself or each element in its own subset).

Conversely, such a collection is called imprimitive if it preserves at least one non-trivial

partition of Ω under its action( Hankerson et al., 2000).

Theorem 1.2.3. For every n, the symmetric group Sn acts n-transitively on Ω = 1, 2, . . . , n

( Ryan & Lin, 2009).

Theorem 1.2.4. Every k-transitive group G (with k ≥ 2) acting on a set Ω is primitive

( Ryan & Lin, 2009).

Definition 1.2.5. Let G be a finite group. If N and G are groups, an extension of N by

G is a group M such that:

1. N EM , and

2. M/N ∼= G ( Berlekamp, 2015).

1.2.2 Representations

Let G be a group and F be a field. An FG-module is defined as a vector space V over

F equipped with a left action by elements of G, such that for any g ∈ G, the action

of g on V is a linear transformation. There exists a one-to-one correspondence between

representations of G and FG-modules. Consequently, the theoretical results pertaining to
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FG-modules can be directly applied to representations (Hankerson et al., 2000; Ryan &

Lin, 2009).

Theorem 1.2.6. For a finite group G and a field F, there exists a bijective correspondence

between finitely generated FG-modules and representations of G on finite-dimensional F-

vector spaces ( Ryan & Lin, 2009; Sayed, 2016).

The subsequent definitions are presented in the context of FG-modules, with their equiv-

alents in representation theory implied.

Definition 1.2.7. Let V be an FG-module. A subspace W of V is called an FG-submodule

of V if gw ∈ W for all w ∈ W and g ∈ G ( Hankerson et al., 2000).

Definition 1.2.8. A vector space V endowed with a group action over a field F is termed

elementary or indecomposable if it contains no proper non-zero invariant subspaces under

the group action. Conversely, such a vector space is considered decomposable if it admits

at least one proper non-zero invariant subspace ( Hankerson et al., 2000; Ryan & Lin,

2009).

Definition 1.2.9. An FG-module V is said to be decomposable if it can be expressed as a

direct sum of two FG-submodules, i.e., if there exist submodules U and W of V such that

V = U ⊕W . If V can be written as a direct sum of irreducible submodules, it is called

completely reducible ( Ryan & Lin, 2009).

1.2.3 Characteristics and Attributes of Linear Codes

The study of linear codes forms a cornerstone in coding theory, providing essential tools for

error detection and correction in data transmission and storage. This subsection explores

the fundamental properties that define and distinguish linear codes, offering insights into

their structure, capabilities, and applications. We begin by considering a finite field Fq

of order q, where q is prime. Within this context, we define and examine several key

concepts:
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Definition 1.2.10. A q-ary code C over Fq is a set of finite sequences composed of

elements from Fq, referred to as codewords. When all codewords in C have the same

length n, we classify C as a block code of length n ( Hankerson et al., 2000; Peterson &

Weldon, 1972; Sayed, 2016).

Central to the analysis of linear codes is the notion of distance between codewords.

Definition 1.2.11. The Hamming distance d(x, y) between two codewords x and y is

defined as the number of positions in which they differ. For a linear code C, the minimum

distance d is given by: [d = min d(0, x) : 0, x ∈ C, x 6= 0] where 0 represents the zero vector

( Hankerson et al., 2000; Berlekamp, 2015; Pham et al., 2011).

These definitions lay the groundwork for exploring more advanced properties of linear

codes, including weight distributions, generator matrices, and dual codes. Through this

examination, we gain insights into the error-correcting capabilities, efficiency, and practi-

cal applications of various code constructions.

Doubly even codes

Doubly even codes represent a significant area of study in coding theory. These error-

correcting codes are defined over a binary alphabet 0, 1 and possess the distinctive prop-

erty that their length is invariably a multiple of 4. A key characteristic of doubly even

codes is their self-duality, meaning a code C is identical to its dual code C⊥. The dual

code C⊥ consists of all binary vectors orthogonal to every codeword in C (Peterson &

Weldon, 1972).

The self-dual nature of these codes offers advantages in both encoding and decoding pro-

cesses, enhancing error correction efficiency. Moreover, the minimum Hamming distance

of doubly even codes is always even. Hamming distance, defined as the number of differ-

ing positions between two codewords, is crucial in determining error-correcting capability.

The even minimum distance facilitates error detection and correction (Peterson & Wel-
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don, 1972).

Interestingly, doubly even codes exist exclusively for lengths that are multiples of 8.

This non-trivial result in coding theory underscores the mathematical depth of these

structures. The study of doubly even codes thus intertwines fundamental concepts of

linear algebra, combinatorics, and information theory, making them a rich subject for

theoretical exploration and practical application in error-correcting systems (Peterson &

Weldon, 1972).

Projective codes

Projective codes are a class of linear codes that are defined using projective geometry.

They have good error-correcting capabilities and have a high minimum distance, which

makes them effective at correcting errors in transmitted data. This property is particularly

important in applications such as telecommunications and data storage. These codes have

a large covering radius, which means they can cover a large portion of the space of possible

codewords. This property is useful in applications such as cryptography and network

coding. In addition, they have a natural symmetry structure that can be exploited in

applications such as cryptography and coding theory. This symmetry can be used to

construct codes with desirable properties, such as those that are invariant under certain

automorphisms of the code. The projective codes also have a rich algebraic structure that

is used to study their properties for instance minimum distance. Projective codes have

connections to a variety of other areas of mathematics, including algebraic geometry,

number theory, and group theory. This makes them a rich area of study with many

interesting applications and connections to other fields (Peterson & Weldon, 1972; Sadiki

et al., n.d.).

Irreducible codes

The length of irreducible codes is characterized by being either a prime number or a prime

power. This structural property facilitates analysis and implementation by providing a
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well-defined code size. A notable feature of these codes is their tendency to possess large

minimum distances, which directly correlates with their error-correcting prowess. The

greater the minimum distance, the more errors a code can detect and correct (Peterson

& Weldon, 1972).

The minimum distance of an irreducible code is intrinsically linked to the properties of

the field upon which it is constructed. Furthermore, irreducible codes are distinguished by

their efficient encoding and decoding processes, which leverage algebraic methods. These

codes are often engineered to achieve optimality in error correction (Peterson & Weldon,

1972).

The combination of these attributes structured length, substantial minimum distance,

and efficient algebraic processing renders irreducible codes particularly advantageous for

real-world applications. Their optimality in error correction further enhances their appeal

and utility in practical scenarios (Peterson & Weldon, 1972).

Decomposable codes

Decomposable codes have the property of being constructed through the composition of

smaller component codes. The code is formed by combining two or more smaller codes

in a specific way. This composition property allows for flexible design and construction

of codes with desired properties. By composing smaller codes with suitable properties,

decomposable codes can achieve improved error-correcting capabilities. The composition

can be designed in such a way that the resulting code has a larger minimum distance

or enhanced error correction performance compared to the individual component codes.

To add on this, decomposable codes exhibit modularity, meaning that the code can be

decomposed back into its constituent component codes. This modularity property facili-

tates efficient encoding and decoding algorithms by breaking down the code into smaller,

manageable parts (Peterson & Weldon, 1972).
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Also, the composition property of decomposable codes provides flexibility in code design.

Different combinations of component codes can be used to achieve specific code prop-

erties, such as large minimum distance, high error correction capability, or resistance to

specific types of errors. Decomposable codes often involve trade-offs between various code

properties. For example, while combining component codes may improve error correction

capability, it may also result in increased encoding and decoding complexity. Design-

ing decomposable codes involves balancing these trade-offs based on specific application

requirements (Peterson & Weldon, 1972).

1.2.4 Error Detection and Correction Strategies

This subsection explores the methodologies employed in interpreting and rectifying en-

coded messages. We focus on the practical application of codes in the context of message

transmission and reception. Our analysis assumes the use of a symmetric q-ary channel,

where each symbol in the code’s alphabet has an equal probability of erroneous transmis-

sion, and in the event of an error, all incorrect symbols are equally likely to occur. The

following theorem provides a precise quantification of a code’s capacity for error detection

and correction, given the assumption of a symmetric channel:

Theorem 1.2.12. For a code C with minimum distance d, the following properties hold:

i . C can detect up to d - 1 errors

ii . C can correct up to bd−1
2
c errors

This theorem establishes the fundamental relationship between a code’s minimum dis-

tance and its error-handling capabilities, forming the basis for evaluating the effectiveness

of various coding schemes (Berlekamp, 2015; Hankerson et al., 2000).

The error detection and correction process typically involves several steps. First, the

received message is examined for potential errors. This is often done by checking if the
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received word is a valid codeword. If it is not, an error is detected. The number of errors

that can be reliably detected depends on the minimum distance of the code, as stated in

the theorem above (Peterson & Weldon, 1972).

Once an error is detected, the next step is error correction. This involves determining the

most likely transmitted codeword given the received word. The most common approach is

to choose the codeword that is closest to the received word in terms of Hamming distance.

This method, known as maximum likelihood decoding, is optimal for symmetric channels

(Ryan & Lin, 2009).

Various algorithms have been developed for efficient error correction in different types of

codes. For linear codes, syndrome decoding is a widely used technique. This method

involves computing the syndrome of the received word, which is zero if and only if the

received word is a valid codeword. The syndrome provides information about the error

pattern, which can be used to correct the errors (Bierbrauer, 2016).

For cyclic codes, algebraic decoding algorithms such as the Berlekamp-Massey algorithm

are often employed. These algorithms exploit the algebraic structure of cyclic codes to

achieve efficient error correction. In the case of Reed-Solomon codes, a popular class of

cyclic codes, these algorithms can correct up to bd−1
2
c errors, which is optimal (Berlekamp,

2015).

More recently, iterative decoding algorithms have been developed for certain classes of

codes, such as low-density parity-check (LDPC) codes and turbo codes. These algorithms

can achieve near-optimal error correction performance with reasonable computational

complexity, making them suitable for practical applications in digital communication sys-

tems (Richardson & Urbanke, 2008).
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The choice of error detection and correction strategy depends on various factors, including

the characteristics of the communication channel, the required level of reliability, and

the available computational resources. The ongoing research in this field continues to

produce new coding schemes and decoding algorithms, pushing the boundaries of what is

achievable in terms of error correction performance (Pham et al., 2011).

1.2.5 Combinatorial Structures and Their Applications

The field of combinatorial design theory provides a rich framework for studying and

applying structured arrangements of elements. This branch of mathematics explores the

existence of structured arrangements where elements are grouped into collections of equal

cardinality, with the property that any chosen subset of a specific size appears in a constant

number of these collections. The theoretical foundations and practical applications of

combinatorial designs offer valuable tools and techniques for:

i . Constructing optimal designs with desired properties

ii . Analyzing the characteristics of existing designs

iii . Applying design principles to solve problems in various domains

Central to this field is the concept of incidence structures, formally defined as follows:

Definition 1.2.13. A combinatorial arrangement A = (E , C,R) consists of three compo-

nents:

i . E represents the collection of fundamental elements

ii . C denotes the family of element groupings

iii . R specifies the membership relationship between E and C

This mathematical framework serves as the foundation for exploring more complex design

structures and their properties, bridging theoretical concepts with practical applications
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in areas such as experimental design, coding theory, and cryptography (Hankerson et al.,

2000; Ryan & Lin, 2009). One of the most fundamental types of combinatorial designs

is the balanced incomplete block design (BIBD). A BIBD is an arrangement of v distinct

objects into b blocks such that each block contains exactly k distinct objects, each object

occurs in exactly r different blocks, and every pair of distinct objects occurs together in

exactly λ blocks. These designs find applications in various fields, including agricultural

experiments, software testing, and network security (Bierbrauer, 2016).

Another important class of combinatorial designs is t-designs, which generalize the con-

cept of BIBDs. A t-(v, k, λ) design is an incidence structure where each block contains k

points, and every t-subset of points is contained in exactly λ blocks. These designs have

connections to coding theory, with certain t-designs giving rise to optimal error-correcting

codes (Kananu, 2019).

Steiner systems are a special case of t-designs where λ = 1. The most famous example is

perhaps the Steiner triple system, where k = 3. These systems have applications in cod-

ing theory, cryptography, and computer science. For instance, the unique Steiner triple

system on 7 points (often denoted as STS(7)) is closely related to the Hamming [7, 4, 3]

code, a fundamental error-correcting code (Marani, 2019).

Hadamard matrices, which are square matrices of order n with entries ±1 such that

HHT = nI, form another important class of combinatorial structures. These matrices

have applications in coding theory, cryptography, and signal processing. The Paley con-

struction, which uses quadratic residues in finite fields, provides a method for constructing

Hadamard matrices of certain orders (Rodrigues, 2002).

In recent years, there has been increasing interest in the connections between combi-

natorial designs and quantum information theory. Mutually unbiased bases (MUBs) and
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symmetric informationally complete positive operator-valued measures (SIC-POVMs) are

quantum structures that have deep connections to certain combinatorial designs. These

connections are being explored for potential applications in quantum cryptography and

quantum error correction (Sayed, 2016).

The study of combinatorial designs also intersects with graph theory. Many designs can

be represented as graphs, and conversely, certain graphs give rise to designs. For example,

strongly regular graphs are closely related to symmetric designs. This interplay between

designs and graphs provides additional tools and perspectives for analyzing these struc-

tures (Chikamai, 2012). In conclusion, combinatorial structures and their applications

form a rich and active area of research, with connections to many branches of mathe-

matics and numerous practical applications. As technology advances and new challenges

arise in fields such as data science, network design, and quantum computing, the impor-

tance of combinatorial designs is likely to continue growing, driving further theoretical

developments and practical innovations.

1.3 Statement of the Problem

The exploration of mathematical groups and their structural properties has been an active

area of research in algebra and coding theory (Chikamai, 2012; Kariuki, 2019; Maina, 2019

& Marani, 2019). Prior studies by these authors have shown that analyzing subgroups

and representations of various finite groups can yield beneficial linear codes and com-

binatorial designs with valuable applications in communications systems, data storage,

cryptography, and more. However, there remains a knowledge gap identified by (Chika-

mai, 2012) regarding the classification of subgroup structures and constructions of codes

and designs from additional groups of extensions. This limited our understanding of these

groups’ representations and prevented us from assessing the parameters and applications

of the structures they can produce. A systematic classification and analysis was needed

to unlock their potential benefits.
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This research aimed at addressing this gap by classifying and analyzing maximal sub-

groups and the internal structures within new groups of extension using modular repre-

sentation techniques. Addressing this gap expands our knowledge of these groups’ internal

structures and modular constructions while revealing new optimal codes and designs for

practical applications.

1.4 General objective of the study

The general objective of research was to classify internal structures of some groups of

extension using modular representation method.

1.5 Specific objectives of the study

The specific objectives for the study were:

i . To classify maximal subgroups of some groups of extension.

ii . To enumerate linear codes from maximal subgroups of some groups of extension.

iii .To construct lattice diagrams of linear codes obtained from maximal subgroups.

iv .To analyse the properties of linear codes and designs constructed using the modular

representation method.

1.6 Significance of the study

Linear codes and designs from maximal subgroups using the modular representation

method are important because they have many theoretical and practical applications

in coding theory and combinatorial mathematics. Some of the reasons why we need these

codes and designs are:

i . Error-correcting codes: Linear codes are an important class of error-correcting

codes used in digital communication systems, storage devices, and other applica-

tions like in Satellite Communication data streaming, wireless sensor networking
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and data management software. The construction of linear codes using the modu-

lar representation method can lead to codes with good error-correcting properties,

which are important for ensuring reliable transmission and storage of data.

ii . Combinatorial designs: Combinatorial designs are important objects of study in

combinatorial mathematics, and have applications in experimental design, statistics,

and other areas. The construction of designs using the modular representation

method can lead to designs with interesting properties related to the structure of

finite groups.

iii . Cryptography: Linear codes and designs have applications in cryptography, where

they are used for error correction and encryption. The construction of these objects

using the modular representation method can lead to codes and designs with good

cryptographic properties, such as resistance to attacks and efficient key exchange.

iv . Group theory: The construction of linear codes and designs from maximal sub-

groups using the modular representation method lead to new insights into the struc-

ture of finite groups and their applications in coding theory and combinatorial math-

ematics.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews literature on work of authors related to modular representation

theory.

2.2 Empirical Literature

The doctoral research conducted by Chikamai (2012) explored the development of error-

correcting schemes arising from specialized algebraic depictions of specific elementary

symmetry structures. The study focused on understanding the properties of codes, with

the aim of uncovering new insights and results. The research emphasized the significance

of finite simple groups, fundamental mathematical structures with diverse applications

in various branches of mathematics. By utilizing 2-modular representations, the study

explored how these groups generated linear codes. Linear codes, crucial in coding theory,

provided systematic and error-detecting methods for representing information, finding

applications in telecommunications, cryptography and error correction.

The dissertation by Marani (2019) specifically focused on the utilization of Mathieu groups

M24 and M23, which are finite sporadic simple groups known for their exceptional prop-

erties. The study explored how these groups can be exploited to construct linear codes,

graphs, and designs. Linear codes, fundamental in coding theory, enable systematic and

error-detecting information representation. Graphs and designs, essential in combinato-

rial mathematics, had applications in computer science and network analysis. The study

delved into the properties of these structures, providing valuable insights into their ap-

plications and advantages. By establishing the relationship between Mathieu groups and

linear codes, graphs, and designs, this research significantly contributed to the advance-
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ment of coding theory and combinatorial mathematics.

The study on 2-modular representations of the unitary group U3(4) and their application

as linear codes by Maina (2019) investigated the interplay between the group and the

codes and designs. The research focused on the unitary group U3(4), a finite group with

significant mathematical properties. By utilizing 2-modular representations, the study ex-

amined how this group generated optimal linear codes. The dissertation presented novel

results obtained through the construction and analysis of linear codes based on 2-modular

representations of the unitary group U3(4). By establishing the relationship between the

unitary group U3(4) and linear codes, this research contributed to the advancement of

coding theory and combinatorics.

Kananu (2019) investigated the properties of these mathematical structures, aimed at un-

covering new insights and results. The research focused on projective symplectic group,

PS8(2), a mathematical structure renowned for its unique properties. By exploiting this

group, codes, designs and graphs were generated. The study investigated the properties of

these mathematical structures, aimed at uncovering new insights and results. The research

focused on projective symplectic group, PS8(2), a mathematical structure renowned for

its unique properties. By exploiting this group, codes, designs and graphs were generated.

The codes were fundamental in coding theory and systematically represented properties

that could detect errors. Designs, on the other hand, had applications in experimental

design and statistical analysis, while graphs played a key role in graph theory and had

diverse applications in computer science, network analysis, and social sciences. By es-

tablishing the relationship between the projective symplectic group PS8(2) and codes,

designs, and graphs, this research contributed to the advancement of coding theory, com-

binatorial mathematics, and graph theory.

In the study conducted by Kariuki (2019), ternary linear codes and designs derived from
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the Projective Special Linear Group PSL3(4) were explored. The Projective Special Lin-

ear Group PSL3(4) is a specific projective group known for its significant mathematical

properties. The research focused on utilizing this group to construct and analyze ternary

linear codes and designs, which played a fundamental role in coding theory for system-

atic and error-detecting methods of information representation, as well as in experimental

design and statistical analysis. The author presented the findings obtained through the in-

vestigation of ternary linear codes and designs derived from the Projective Special Linear

Group PSL3(4). The properties of the mathematical structures were analyzed, shedding

light on their construction, invariance, and potential applications. The research estab-

lished the relationship between the Projective Special Linear Group PSL3(4) and ternary

linear codes and designs, providing insights into their properties and advantages.

Rodrigues (2002) examined constructions of combinatorial structures and their graphical

representations, utilizing a range of fundamental algebraic objects as a foundation. The

study focused on constructing codes from designs, and graphs using finite simple groups

as a basis. Codes of designs provided systematic methods for representing combinato-

rial structures, while codes of graphs had applications in areas such as network coding

and error correction. The properties of these mathematical structures were analyzed,

shedding light on their construction, invariance, and potential applications. The research

established the relationship between finite simple groups and codes of designs and graphs,

offering insights into their properties and advantages and contributed to the understand-

ing of finite simple groups and their internal structures.

Several linear codes have been constructed from different types of finite simple groups

using 2-modular representations method by a number of authors. For instance, Chikamai

(2012) derived error-correcting schemes from specific fundamental algebraic structures,

Maina (2019) constructed systematic encoding methods from the Unitary Group U3(4),

Marani (2019) explored various combinatorial configurations and their graphical represen-
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tations originating from the exceptional permutation groups M24 and M23, and Kananu

(2019) generated coding theory objects, combinatorial arrangements, and network mod-

els based on a particular symplectic geometry. However, classification of linear codes and

designs from some groups of extension using modular representation method has not been

explored. This study aims to address this gap by classifying and analyzing the internal

structures within new groups of extension using modular representation method.
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Chapter 3

Methods

3.1 Introduction

In this chapter, we describe construction of linear codes and designs from finite groups

using modular representation method. Computational tool, MAGMA was used together

with modular representation method to construct optimal codes and designs and analyze

their properties.

3.2 Modular representation method and binary linear Codes

Constructing linear codes and designs from groups of extension using modular represen-

tation method typically involved group actions and took the following steps:

i . Generate a given group of extension G.

ii . Determine the subgroups of G .

iii . Choose a maximal sub group H of G.

iv . Define a group action of G on the set of left cosets of H, denoted as G/H.

v . Construct a permutation module M associated with this action.

vi . Construct submodules from M by partitioning the module into smaller subspaces

that are invariant under the action of G.

vii . Identify a submodule N of M considering the stabilizer subgroup of the identity

coset of H.

vii . Construct a binary linear code C based on the submodule N.
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ix . The resulting binary linear code C represents the information that can be trans-

mitted or stored using the structure of the maximal subgroup H within the original

group of extension G (Chikamai, 2012 ; Kananu, 2019 ; Maina, 2019 ; Marani, 2019

; Rodrigues, 2002 & Sayed, 2016).
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Chapter 4

Analysis of Maximal Subgroups for Selected Extension Groups

This chapter examines the maximal subgroups of four specific extension groups: O+
8 (2) : 2

of S6(2), L3(4) : 2 of L3(4), L3(4) : 22 of L3(4), and L3(3) : 2 of L3(3).

4.1 Maximal Subgroups of O+
8 (2) : 2

O+
8 (2) : 2 is an extension group where S6(2) is a normal subgroup. Table 4.1 presents the

8 maximal subgroups of O+
8 (2) : 2, arranged by increasing degree.

Table 4.1: Maximal subgroups of O+
8 (2) : 2

Maximal subgroup Degree Order No. of Orbits Length of orbits
S6(2) : 2 120 2,903,040 3 [1,56,63]
26 : S8 135 2,580,480 2 [56,64]
S9 960 362,880 2 [36,84]
22 : S4(3) : 3 1120 311,040 3 [3,36,81]
213 : 33 1575 221,184 2 [24,96]
L2(7) : 210 2025 172,032 2 [8,112]
27 : 35 11200 31,104 2 [12,108]
2 : S5 : S5 12,096 28,800 2 [56,64]

The analysis of O+
8 (2) : 2 reveals a complex subgroup structure with varying degrees and

orbit lengths. The subgroup S6(2) : 2 stands out with the highest order but a relatively

low degree, suggesting a dense internal structure. In contrast, 2 : S5 : S5 has the highest

degree but the lowest order, indicating a more spread-out configuration. The varying

number and lengths of orbits across subgroups hint at diverse symmetry patterns within

the extension group.

4.2 Maximal Subgroups of L3(4) : 2

L3(4) : 2 is an extension of L3(4). Table 4.2 shows its 4 maximal subgroups:
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Table 4.2: Maximal subgroups of L3(4) : 2
Maximal subgroup Degree Order No. of Orbits Length of orbits
2 : A5 : 24 21 1920 2 [40,80]
2 : A6 56 720 3 [15,15,90]
L2(7) : (2) 120 336 4 [1,21,42,56]
24 × 32 280 144 4 [12,18,18,72]

The maximal subgroups of L3(4) : 2 display a clear trend of increasing degree correspond-

ing with decreasing order. This pattern suggests that as the subgroups become more

complex in structure (higher degree), they become less numerous (lower order). The orbit

structures also become more fragmented as the degree increases, with the highest degree

subgroup having the most evenly distributed orbit lengths.

4.3 Maximal Subgroups of L3(4) : 22

L3(4) : 22 extends L3(4). Table 4.3 presents its 5 maximal subgroups:

Table 4.3: Maximal subgroups of L3(4) : 22

Maximal subgroup Degree Order No. of Orbits Length of orbits
A6 : 22 56 1440 2 [30,90]
28 × 3 105 768 3 [24,32,64]
L2(7) : 22 120 672 4 [1,21,42,56]
25 × 32 280 288 3 [12,36,72]
22 : A5 336 240 4 [10,20,30,60]

The maximal subgroups of L3(4) : 22 show a general trend of increasing degree and

decreasing order, similar to L3(4) : 2. However, the relationship is less strict here, with

some exceptions. The orbit structures are more varied, with no clear pattern emerging

as the degree increases. This suggests a more complex interplay between the subgroup

structures in this extension group.

4.4 Maximal Subgroups of L3(3) : 2

L3(3) : 2 extends L3(3). Table 4.4 shows its 4 maximal subgroups:
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Table 4.4: Maximal subgroups of L3(3) : 2
Maximal subgroup Degree Order No. of Orbits Length of orbits
23 × 33 52 216 2 [36,108]
25 × 3 117 96 3 [48,48,48]
2× 3× 13 144 78 6 [1,13,26,26,39,39]
24 × 3 234 48 6 [8,16,24,24,24,48]

The maximal subgroups of L3(3) : 2 exhibit a clear inverse relationship between degree and

order. Interestingly, the number of orbits increases with the degree, suggesting that higher

degree subgroups have more complex symmetry structures. The orbit lengths become

more fragmented and varied as the degree increases, further supporting this interpretation.
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Chapter 5

Representations of Maximal subgroups of O+
8 (2) : 2

In this chapter, we discussed the representations of Maximal subgroups of O+
8 (2) : 2 . The

findings were then summarized in form of a theorem at the end of each representation.

5.1 Analysis of the 120-Dimensional Representation

This section examines the properties and structure of a 120-dimensional permutation mod-

ule. The module remains unchanged when subjected to the transformations induced by a

symmetry-preserving algebraic structure G operating on a discrete collection of elements

Ω containing 120 distinct members. Our study begin by considering this permutation

module as our primary object of study and systematically identify all its submodules

through recursive analysis.

Our investigation reveals that this permutation module decomposes into a total of 28

distinct submodules. To provide a clear overview of this decomposition, we present the

dimensions of these submodules along with their respective frequencies in Table 5.1.

Table 5.1: Submodules from 120 Permutation Module

m # m # m # m # m #
0 1 37 1 84 1 101 1 119 1
1 1 46 2 85 1 110 1 120 1
10 2 55 1 99 1 116 1
19 1 56 1 100 1 117 1
20 1 64 1
21 1 65 1
35 1 74 2
36 1 83 1

The submodules identified from the decomposition of the 120-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure
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5.1 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.

Figure 5.1: Lattice diagram depicting the submodule structure of the permutation module
of degree 120
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Through careful examination of the lattice diagram, we identify that the submodules of

dimensions 64 and 1 exhibit the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.

To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 5.2, offering a

compact representation of the submodules in terms of coding theory.
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Table 5.2: Binary Linear codes of small dimensions from 120 Permutation Module of
O+

8 (2) : 2

Name Dimension parameters

C120,1 8 [120, 8, 56]2
C120,2 9 [120, 9, 56]2
C120,3 35 [120, 35, 24]2
C120,4 36 [120, 36, 24]2

For the code C120,1, we observe the following properties:

i . The weight enumerator polynomial is given by W (x) = 1 + 120x56 + 135x64.

Notably, all non-zero weights (56 and 64) are divisible by 4.

ii . The dual code C⊥120,1 has a minimum weight of 3.

iii . C120,1 contains only the trivial submodule.

Proposition 5.1.1. Let G be a primitive group of degree 120 of the extension group

O+
8 (2) : 2. The code C120,1 possesses the following characteristics:

i . It is doubly even.

ii . It is projective.

iii . It is irreducible.

Proof.

i. To show C120,1 is doubly even, we examine its weight polynomial W (x) = 1 +

120x56 + 135x64. All non-zero weights (56 and 64) are divisible by 4, satisfying the

definition of a doubly even code.

ii. For projectivity, we note that C⊥120,1 has a minimum weight of 3. A linear code

whose corresponding dual code has a minimum Hamming weight of 3 or more is

classified as a projective code. Thus, C120,1 is projective.
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iii. To prove irreducibility, we examine the submodule lattice in Figure 5.1. We observe

that C120,1, which corresponds to the submodule of dimension 8, has no proper non-

zero submodules. This lack of proper submodules is the definition of irreducibility

for codes.

For the code C120,2, we observe the following properties:

i . The weight enumerator polynomial is W (x) = 1 + 255x56 + 255x64 + x120.

ii . The dual code C⊥120,2 has a minimum weight of 4.

iii . C120,2 contains two non-trivial submodules.

Proposition 5.1.2. Let G be a primitive group of degree 120 of the extension group

O+
8 (2) : 2. The code C120,2 possesses the following characteristics:

i . It is doubly even.

ii . It is projective.

iii . It is decomposable.

Proof.

i . To prove C120,2 is doubly even, we need to show that all codeword weights are

divisible by 4. From the weight enumerator polynomial, we see that the non-zero

weights are 56, 64, and 120. Indeed,

56 = 4 · 14

64 = 4 · 16

120 = 4 · 30

Therefore, all weights are divisible by 4, and C120,2 is doubly even.
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ii . A code is projective if and only if its dual code has minimum distance at least 3.

We are given that C⊥120,2 has a minimum weight of 4, which is greater than 3. Thus,

C120,2 is projective.

iii . The decomposability of C120,2 follows from the existence of two non-trivial sub-

modules. A module is said to be reducible if it can be decomposed into a direct

product of two non-trivial component modules. The existence of two such non-zero

submodules within C120,2 establishes its reducibility.

Proposition 5.1.3. Consider a highly symmetric permutation group G acting transitively

on a set of 120 elements, where G is an extension of the orthogonal group O+
8 (2) by the

cyclic group of order 2. The dual codes C⊥120,1 and C⊥120,2 have the capacity to rectify up to

1 and 1.5 errors, respectively.

Proof. We apply Theorem 1.2.12, which states that a code with minimum distance d can

correct up to bd−1
2
c errors.

For C⊥120,1: The minimum distance d = 3. Thus, bd−1
2
c = b3−1

2
c = b1c = 1.

For C⊥120,2: The minimum distance d = 4. Thus, bd−1
2
c = b4−1

2
c = b1.5c = 1.

Therefore, C⊥120,1 can correct up to 1 error, and C⊥120,2 can correct up to 1 error. Note

that while the calculation for C⊥120,2 yields 1.5, in practice it can only correct up to 1 error

as we must take the floor of this value.

Combinatorial Designs from Minimum Weight Codewords in Codes C120,i

We determined designs formed by the set of coordinate positions of codewords with min-

imum weight wm in the codes C120,i. Table 5.3 provides information about these designs

in four columns:

Column 1: The code C120,i containing codewords of weight m.

Column 2: The parameters of the 1-design Dwm formed by the supports of minimum

weight codewords.
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Column 3: The number of blocks in the design Dwm.

Column 4: Whether the design Dwm is primitive or not under the action of the automor-

phism group Aut(C120,i) of the code.

Table 5.3: Combinatorial Designs from Minimum Weight Codewords in Codes C120,i

Code Design Number of blocks Primitive

[120, 8, 56]2 1-(120,56,56) 120 Yes
[120, 9, 56]2 1-(120,56,119) 255 No

Theorem 5.1.4. Let G be the extension group O+
8 (2) : 2 and Ω be the primitive G-set

of size 120 defined by the action of G on the cosets of its maximal subgroup S6(2) : 2.

Examine the significant binary codes C120,1 and C120,2 derived from the action of the group

on the 120-element set. These codes exhibit the following characteristics:

i) . The code C120,1 is a self-orthogonal, geometrically significant, linear error-correcting

code with parameters [120, 8, 56] over the binary field. It generates a primitive sym-

metric 1-design with parameters 1-(120, 56, 56). The dual code of C120,1 has pa-

rameters [120, 112, 3]. Moreover, C120,1 is irreducible.

ii) . The code C120,2 is a doubly even, projective [120, 9, 56] binary code. Its dual code

has parameters [120, 111, 4]. In contrast to C120,1, the code C120,2 is decomposable.

5.2 Analysis of the 135-Dimensional Representation

We constructed a permutation module of dimension 135, which is invariant under the ac-

tion of a permutation group G on a finite set Ω of degree 135. We chose this permutation

module as our object of study and recursively determined all its submodules. The de-

composition of this permutation module yielded a total of 28 distinct submodules. Table

5.4 provides a comprehensive list of the invariant submodules of the permutation module

over the finite field F2 for the representation of degree 135. The table displays the sizes
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of these smaller modules, where the column labeled m represents the size of each module,

and the column labeled # indicates the quantity of modules of each size.

Table 5.4: Smaller modules from 135 Permutation Module

m # m # m #

0 1 50 1 100 3
1 1 51 3 101 1
8 1 52 1 126 1
9 1 83 1 127 1
34 1 84 3 134 1
35 3 85 1 135 1
36 1 99 1

The submodules identified from the decomposition of the 135-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure

5.2 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.
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Figure 5.2: Lattice diagram depicting the submodule structure of the permutation module
of degree 135
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By examining the lattice diagram, we observed that the submodules with dimensions 8

and 1 exhibit the property of irreducibility. Table 5.5 presents the binary linear codes

corresponding to the submodules derived from the permutation module of degree 135.

Table 5.5: Binary Linear codes of small dimensions of 135 Permutation Module

Name Dimensionparameters

C135,1 8 [135, 8, 64]2
C135,2 9 [135, 9, 63]2
C135,3 34 [135, 34, 32]2
C135,4 35 [135, 35, 27]2

We analyzed the properties of the codes with small dimensions derived from the 135-

dimensional permutation module. The following observations were made:

For the code C135,1:

i) . The weight enumerator polynomial of C135,1 is W (x) = 1 + 135x64 + 120x72. We
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noted that the weights of the two non-zero codewords are divisible by 4.

ii) . The dual code C⊥135,1 has a minimum weight of 3.

iii) . C135,1 contains no non-trivial submodules.

Proposition 5.2.1. Suppose G is a primary group of order 135 within the extension

group O+
8 (2) : 2. The code C135,1 exhibits the following characteristics:

i) . It is doubly even.

ii) . It is projective.

iii) . It is irreducible.

Proof.

i) . To prove that C135,1 is doubly even, we examine its weight enumerator polynomial

W (x) = 1 + 135x64 + 120x72. All non-zero weights (64 and 72) are divisible by 4,

satisfying the definition of a doubly even code.

ii) . A linear code is projective if its dual code has a minimum distance of at least 3.

Since C⊥135,1 has a minimum weight of 3, C135,1 is projective.

iii) . To prove irreducibility, we refer to the submodule lattice in Figure 5.2. The

code C135,1, corresponding to the submodule of dimension 8, has no non-trivial

submodules, confirming its irreducibility.

For the code C135,2:

i) . The dual code C⊥135,2 has a minimum weight of 4.

ii) . C135,2 contains two non-trivial submodules of dimensions eight and one.
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Proposition 5.2.2. Suppose G is a primary group of order 135 within the extension

group O+
8 (2) : 2. The code C135,2 exhibits the following characteristics:

i) . It is projective.

ii) . It is decomposable.

Proof.

i) . The dual code C⊥135,2 has a minimum weight of 4, which is greater than 3. By the

definition of projective codes, C135,2 is projective.

ii) . The decomposability of C135,2 is evident from the submodule lattice in Figure 5.2.

The presence of two non-trivial submodules of dimensions 8 and 1 confirms that

C135,2 is decomposable.

Proposition 5.2.3. Let G be a primitive group of degree 135 in the extension group

O+
8 (2) : 2. The dual codes C⊥135,1 and C⊥135,2 have the error-correcting capabilities of 1 and

1.5 errors, respectively.

Proof. Theorem 1.2.12 states that a code with minimum distance d can correct up to
⌊
d−1

2

⌋
errors. For C⊥135,1: The minimum distance d = 3. Therefore,

⌊
d−1

2

⌋
=

⌊
3−1

2

⌋
= b1c = 1.

For C⊥135,2: The minimum distance d = 4. Therefore,
⌊
d−1

2

⌋
=

⌊
4−1

2

⌋
= b1.5c = 1. Thus,

C⊥135,1 can correct up to 1 error, and C⊥135,2 can correct up to 1 error (as the floor function

rounds down 1.5 to 1).

Combinatorial Designs from Minimum Weight Codewords in Codes C135,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C135,i. Table 5.6 presents the properties of these designs,

with each column providing the following information:

Column 1: The code C135,i containing the codewords of weight m.
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Column 2: The parameters of the 1-design Dwm formed by the supports of the minimum

weight codewords.

Column 3: The number of blocks in the design Dwm.

Column 4: Classifies the design Dwm as primitive or non-primitive based on its behavior

under the code’s symmetry group.

Table 5.6: Combinatorial Designs from Minimum Weight Codewords in Codes C135,i

Code Design Number of blocks Primitive

[135, 8, 64]2 1-(135,64,64) 135 Yes
[135, 9, 63]2 1-(135,63,56) 120 Yes

Remark 5.2.4. The 1-designs 1-(135,64,64) and 1-(135,63,56), generated by the codes

C135,1 and C135,2 respectively, are both primitive.

Theorem 5.2.5. Let G be the extension group O+
8 (2) : 2 , and let Ω be the primitive G-set

of size 135 defined by the action of G on the cosets of its maximal subgroup S6(2) : 2.

Examine the significant binary codes C135,1 and C135,2 derived from the action of the group

on the 135-element set. These codes exhibit the following characteristics:

i) . The code C135,1 is a doubly even, projective [135, 8, 64] binary code. Its dual code

has parameters [135, 127, 3]. Moreover, C135,1 is irreducible and generates a primitive

symmetric 1-design with parameters 1-(135,64,64).

ii) . The code C135,2 is a projective [135, 9, 63] binary code, with its dual code having

parameters [135, 126, 4]. In contrast to C135,1, the code C135,2 is decomposable. It

generates a primitive symmetric 1-design with parameters 1-(135,63,56).

5.3 Analysis of the 960-Dimensional Representation

A 960-dimensional representation space was constructed, invariant under the operations of

a symmetry-preserving algebraic structure G acting on a discrete collection of elements Ω
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containing 960 distinct members. This representation space served as the primary object

of study, and a systematic analysis was performed to identify its constituent invariant

subspaces. The investigation revealed that this representation space decomposes into

a total of 106 distinct invariant subspaces. Table 5.7 provides a comprehensive list of

these invariant submodules of the permutation module over the finite field F2. The table

presents the sizes of these smaller modules, where the column labeled m represents the

size of each module, and the column labeled # indicates the quantity of modules of each

size.

Table 5.7: Submodules from 960 Permutation Module

m # m # m # m # m # m #

0 1 202 1 302 1 482 1 659 1 776 1
1 1 208 1 384 1 483 1 674 1 777 1
49 1 209 1 385 1 498 1 675 1 778 1
50 1 210 3 386 1 499 1 700 1 784 1
76 1 211 1 400 1 504 1 701 1 785 1
77 1 224 1 401 1 512 1 707 1 786 1
78 1 225 1 402 1 531 1 708 1 848 1
84 1 226 1 412 1 532 1 723 1 874 1
85 1 236 1 413 1 547 1 724 1 875 1
86 1 237 1 428 1 548 1 734 1 876 1
112 1 252 1 429 1 558 1 735 1 882 1
174 1 253 1 448 1 559 1 736 1 883 1
175 1 259 1 456 1 560 1 749 1 884 1
176 1 260 1 461 1 574 1 750 3 910 1
182 1 285 1 462 1 575 1 751 1 911 1
183 1 286 1 477 1 576 1 752 1 959 1
184 1 301 1 478 1 658 1 758 1 960 1
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The submodules identified from the decomposition of the 960-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure

5.3 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.
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Figure 5.3: Lattice diagram depicting the submodule structure of the permutation module
of degree 960
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Remark 5.3.1. The high dimensionality of the submodules posed computational chal-
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lenges. As a result, our computational tool, MAGMA, was unable to generate the corre-

sponding binary linear codes due to these large dimensions.
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Chapter 6

Representations of Maximal subgroups of L3(4) : 2

This chapter examines the representations of the extension group L3(4) : 2. We present

a detailed analysis of these representations and their properties. To conclude each repre-

sentation, we consolidate our findings into a comprehensive theorem, which encapsulates

the key results of our investigation.

6.1 Analysis of the 21-Dimensional Representation

We developed a 21-dimensional permutation module that remains unchanged when sub-

jected to the transformations induced by a symmetry-preserving algebraic structure G

operating on a discrete collection of elements Ω containing 21 distinct members. This

permutation module served as our primary object of study, and we systematically iden-

tified all its submodules through recursive analysis. Our investigation revealed that this

permutation module decomposes into a total of 12 distinct submodules. Table 6.1 pro-

vides a comprehensive overview of these submodules. In this table, the column labeled

m denotes the dimension of each submodule, while the column labeled # indicates the

frequency of submodules with that dimension. It’s important to note that for each sub-

module of dimension k, there exists a corresponding submodule of dimension n−k, where

n is the dimension of the full module.
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Table 6.1: Submodules from 21 Permutation Module.

m #

0 1
1 1
9 1
10 3
11 3
12 1
20 1
21 1

The submodules identified from the decomposition of the 21-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure

6.1 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.

Figure 6.1: Lattice diagram depicting the submodule structure of the permutation module
of degree 21
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Through careful examination of the lattice diagram, we identify that the submodules of

dimensions 9 and 1 exhibit the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.
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To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 6.2, offering a

compact representation of the submodules in terms of coding theory.

Table 6.2: Binary Linear codes of small dimension from 21 Permutation Module

Name Dimensionparameters

C21,1 9 [21, 9, 8]2
C21,2 10 [21, 10, 7]2
C21,3 10 [21, 10, 6]2
C21,4 10 [21, 10, 5]2
C21,5 11 [21, 11, 6]2
C21,6 11 [21, 11, 6]2
C21,7 11 [21, 11, 5]2
C21,8 12 [21, 12, 5]2
C21,9 20 [21, 20, 2]2

We conducted a detailed analysis of the codes derived from the submodules. The following

properties were observed and rigorously examined:

For C21,1:

i . The weight enumerator polynomial of C21,1 is W (x) = 1 + 210x8 + 280x12 + 21x16.

We observed that all non-zero weights (8, 12, and 16) are divisible by 4.

ii . The dual code C⊥21,1 has a minimum weight of 5.

iii . C21,1 contains only the trivial submodule.

Proposition 6.1.1. Let G be a primitive group of degree 21 of the extension group L3(4) :

2. The code C21,1 possesses the following characteristics:

i. It is doubly even.

ii. It is projective.

iii. It is irreducible.
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Proof.

i. To show C21,1 is doubly even, we examine its weight polynomial W (x) = 1+210x8 +

280x12 + 21x16. All non-zero weights (8, 12, and 16) are divisible by 4, satisfying

the definition of a doubly even code.

ii. To establish projectivity, we observe that the dual code C⊥21,1 exhibits a minimum

weight of 5. This property satisfies the criterion for projectivity. Consequently, we

can conclude that C21,1 is indeed projective.

iii. To prove irreducibility, we examine the submodule lattice in Figure 6.1. We observe

that C21,1, which corresponds to the submodule of dimension 9, has no proper non-

zero submodules. This lack of proper submodules is the definition of irreducibility

for codes.

For C21,2, C21,4, C21,6, C21,7, and C21,8

The dual codes C⊥21,2, C⊥21,4, C⊥21,6, C⊥21,7, and C⊥21,8 have minimum weights of 6, 6, 7, 6, and

8 respectively.

Proposition 6.1.2. Let G be a primitive group of degree 21 of the extension group L3(4) :

2. The codes C21,2, C21,4, C21,6, C21,7, and C21,8 are projective.

Proof. A linear code is projective if and only if its dual code has minimum distance at

least 3. We have observed that the minimum weights of the dual codes are 6, 6, 7, 6, and

8 respectively, all of which are greater than 3. Therefore, by definition, these codes are

projective.

For C21,3:

i The weight enumerator polynomial of C21,3 is W (x) = 1 + 56x6 + 210x8 + 336x10 +

280x12 + 120x14 + 21x16. We observed that all weights are divisible by 2.
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ii The dual code C⊥21,3 has a minimum weight of 5.

iii C21,3 contains two non-trivial submodules of dimensions 9 and 1.

Proposition 6.1.3. Let G be a primitive group of degree 21 of the extension group L3(4) :

2. The code C21,3 possesses the following characteristics:

i. It is even.

ii. It is projective.

iii. It is decomposable.

Proof.

i. To prove C21,3 is even, we examine its weight enumerator polynomial. All weights

(6, 8, 10, 12, 14, 16) are divisible by 2, satisfying the definition of an even code.

ii. For projectivity, we note that C⊥21,3 has a minimum weight of 5. As this is greater

than 3, C21,3 is projective by definition.

iii. The structural property of decomposability for C21,3 is evident from its possession

of two non-trivial submodules. This characteristic aligns with the formal definition

of decomposability. The identification of these two non-trivial submodules within

C21,3 firmly establishes its decomposable nature.

For C21,5 and C21,9:

i The weights of the codewords of both codes are divisible by 2.

ii C⊥21,5 and C⊥21,9 have minimum weights of 5 and 21 respectively.

Proposition 6.1.4. Let G be a primitive group of degree 21 of the extension group L3(4) :

2. The codes C21,5 and C21,9 possess the following characteristics:
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i. They are even.

ii. They are projective.

Proof.

i. For both C21,5 and C21,9, all codeword weights are divisible by 2. This property, by

definition, makes these codes even.

ii. The dual codes C⊥21,5 and C⊥21,9 have minimum weights of 5 and 21 respectively.

Both of these values exceed 3, which is the threshold for projectivity. Therefore,

both C21,5 and C21,9 are projective.

Combinatorial Designs from Minimum Weight Codewords in Codes C21,i

We determined designs formed by the set of coordinate positions of codewords with min-

imum weight wm in the codes C21,i. Table 6.3 provides information about these designs

in four columns:

i . Column 1: The code C21,i containing codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of mini-

mum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv . Column 4: Whether the design Dwm is primitive or not under the action of the

automorphism group Aut(C21,i) of the code.
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Table 6.3: Combinatorial Designs from Minimum Weight Codewords in Codes C21,i

Code Design Number of blocks Primitive

21,9, 8]2 1-(21,8,80) 210 no
[21, 10, 7]2 1-(21,7,40) 120 Yes
[21, 10, 6]2 1-(21,6,16) 56 Yes
[21, 10, 5]2 1-(21,5,5) 21 Yes
[21, 11, 6]2 1-(21,6,48) 168 No
[21, 11, 6]2 1-(21,6,16) 56 Yes
[21, 11, 5]2 1-(21,5,5) 21 Yes
[21, 12, 5]2 1-(21,5,5) 21 Yes
[21, 20, 2]2 1-(21,2,20) 210 No

Remark 6.1.5. From our analysis of the designs derived from the minimum weight code-

words, we observe:

i . The designs 1-(21,7,40), 1-(21,6,16), and 1-(21,5,5) exhibit primitive structure

under the action of their respective code automorphism groups.

ii . In contrast, the designs 1-(21,8,80), 1-(21,6,48), and 1-(21,2,20) are not primitive

under this action.

iii . Notably, the codes [21, 10, 5]2, [21, 11, 5]2, and [21, 12, 5]2, despite having different

parameters, all generate the same design 1-(21,5,5).

Theorem 6.1.6. Let G denote the extension group L3(4) : 2, and Ω represent the

primitive G-set of size 21, defined by G’s action on the cosets of its maximal subgroup

2 : A5 : 24. We consider the significant binary codes C21,1, C21,2, . . . , C21,8 derived from the

21-dimensional permutation module. These codes exhibit the following characteristics:

i . The code C21,1 is a self-orthogonal, geometrically significant, linear error-correcting

code with parameters [21, 9, 8] over the binary field. Its dual code has parameters

[21, 12, 5]. Furthermore, C21,1 possesses the property of irreducibility.

ii . The codes C21,2, C21,4, C21,6, C21,7, and C21,8 are projective binary codes with pa-

rameters [21, 10, 7], [21, 10, 5], [21, 11, 6], [21, 11, 5], and [21, 12, 5] respectively. Their
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corresponding dual codes have parameters [21, 11, 6], [21, 11, 6], [21, 10, 7], [21, 10, 6],

and [21, 9, 8].

iii . The code C21,3 is an even and projective [21, 10, 6] binary code. Its dual code has

parameters [21, 11, 5]. Furthermore, C21,3 is decomposable.

iv . The codes C21,5 and C21,9 are even and projective binary codes with parameters

[21, 11, 6] and [21, 20, 2] respectively. Their dual codes have parameters [21, 10, 5]

and [21, 1, 21].

v . The codes C21,2, C21,3, C21,4, C21,6, C21,7, and C21,8 generate primitive symmet-

ric 1-designs with parameters 1-(21,7,40), 1-(21,6,16), 1-(21,5,5), 1-(21,6,16), 1-

(21,5,5), and 1-(21,5,5) respectively.

6.2 Analysis of the 56-Dimensional Representation

We developed a 56-dimensional permutation module that remains unchanged when sub-

jected to the transformations induced by a symmetry-preserving algebraic structure G

operating on a discrete collection of elements Ω containing 56 distinct members. This

permutation module served as our primary object of study, and we systematically identi-

fied all its submodules through recursive analysis.

Our investigation revealed that this permutation module decomposes into a total of 14

distinct submodules. Table 6.4 provides a comprehensive overview of these submodules.

In this table, the column labeled m denotes the dimension of each submodule, while the

column labeled # indicates the frequency of submodules with that dimension.
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Table 6.4: Submodules from 56 Permutation Module of L3(4) : 2

m # m #

0 1 35 1
1 1 36 1
10 2 37 1
19 1 46 2
20 1 55 1
21 1 56 1

The submodules identified from the decomposition of the 56-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure

6.2 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.

Figure 6.2: Lattice diagram depicting the submodule structure of the permutation module
of degree 56
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Through careful examination of the lattice diagram, we identify that the submodule of

dimension one exhibits the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.

To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 6.5, offering a

compact representation of the submodules in terms of coding theory.

Table 6.5: Binary Linear codes of small dimensions of degree 56 of L3(4) : 2.

Name Dimensionparameters

C56,1 10 [56, 10, 16]2
C56,2 19 [56, 19, 16]2
C56,3 20 [56, 20, 10]2
C56,4 21 [56, 21, 10]2

We conducted a detailed analysis of the properties of selected codes derived from the

submodules. Our findings are as follows:

For codes C56,1 and C56,2:

i . All codeword weights are divisible by 4.

ii . The dual codes C⊥56,1 and C⊥56,2 have minimum weights of 4 and 6 respectively.

Proposition 6.2.1. Let G be a primitive group of degree 56 of the extension group L3(4) :

2. Then the codes C56,1 and C56,2 are:

i . Doubly even

ii . Projective

Proof.

i . To establish the doubly even nature of C56,1 and C56,2, we note a fundamental

characteristic of their codewords: the weight of each codeword is invariably a mul-

tiple of 4. This property aligns precisely with the defining criterion for doubly even

codes.
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ii . For projectivity, we note that the dual codes have minimum weights of 4 and

6 respectively. By definition, a code is projective if its dual code has minimum

distance at least 3. Both 4 and 6 exceed this threshold, thus C56,1 and C56,2 are

projective.

For codes C56,3 and C56,4:

i . All codeword weights are divisible by 2.

ii . The dual codes C⊥56,3 and C⊥56,4 have minimum weights of 6 and 8 respectively.

Proposition 6.2.2. Let G be a primitive group of degree 56 of the extension group L3(4) :

2. Then the codes C56,3 and C56,4 are:

i . Even

ii . Projective

Proof.

i . To prove that C56,3 and C56,4 are even, we observe that all codeword weights are

divisible by 2, which is the definition of an even code.

ii . For projectivity, we note that the dual codes have minimum weights of 6 and 8

respectively. As both these values exceed 3, C56,3 and C56,4 are projective by the

same reasoning as in the previous proposition.

Combinatorial Designs Derived from Minimum Weight Codewords in C56,i

In our analysis, we focused on the combinatorial structures that emerge from the mini-

mum weight codewords in the codes C56,i. Specifically, we examined the designs formed

by the support sets of these codewords. Our findings are presented in Table 6.6, which
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is organized into four columns. The first column identifies the code C56,i and its cor-

responding weight m. Column 2 delineates the defining characteristics of the emergent

1-design Dwm, encapsulating its structural properties in a concise parametric form. The

subsequent column, Column 3, enumerates the total number of blocks constituting each

design Dwm, offering insight into its combinatorial complexity. Finally, the fourth col-

umn indicates whether the design Dwm exhibits primitivity under the action of the code’s

automorphism group Aut(C).

Table 6.6: Combinatorial Designs Derived from Minimum Weight Codewords in C56,i

Code Design Number of
blocks

Primitive

[56, 10, 16]2 1-(56,16,6) 21 Yes
[56, 19, 16]2 1-(56,16,492) 1722 No
[56, 20, 10]2 1-(56,10,10) 56 Yes
[56, 21, 10]2 1-(56,10,10) 56 Yes
[56, 35, 8]2 1-(56,8,405) 2835 No

Remark 6.2.3. The analysis of designs derived from our codes revealed several notewor-

thy characteristics:

i. The designs 1-(56,16,6) and 1-(56,10,10) exhibit primitive properties.

ii. Conversely, the designs 1-(56,16,492) and 1-(56,8,405) lack primitivity.

iii. The code [56, 10, 16]2 generates the design 1-(56,16,6), while both codes [56, 20, 10]2

and [56, 21, 10]2 produce an identical design, 1-(56,10,10).

Theorem 6.2.4. Let G symbolize the extension group L3(4) : 2, and Ω denote a prim-

itive algebraic structure of order 56, arising from the group G’s transformations on the

quotient space formed by the cosets of 2 : A6. We examine the significant binary codes

C56,1, C56,2, C56,3, C56,4, and C56,5 derived from the 56-dimensional permutation module.

These codes exhibit the following notable characteristics:
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i. C56,1 and C56,2 are doubly even and projective binary codes with parameters [56, 10, 16]

and [56, 19, 16] respectively. Their corresponding dual codes have parameters [56, 46, 4]

and [56, 37, 6].

ii. C56,3 and C56,4 are even and projective binary codes with parameters [56, 20, 10] and

[56, 21, 10] respectively. Their dual codes have parameters [56, 36, 6] and [56, 35, 8].

iii. C56,1, C56,3, and C56,4 each generate primitive symmetric 1-designs: 1-(56,16,6), 1-

(56,10,10), and 1-(56,10,10) respectively.

6.3 Analysis of the 120-Dimensional Representation

Our investigation focused on a 120-dimensional permutation module. This module re-

mains unchanged when subjected to the transformations induced by a symmetry-preserving

algebraic structure G operating on a discrete collection of elements Ω containing 120

distinct members. Our investigation focused on this permutation module as our princi-

pal subject of inquiry, and we methodically uncovered its complete submodule structure

through an iterative decomposition process.

Our investigation revealed that this permutation module decomposes into a total of 28

distinct submodules. To provide a clear overview of this decomposition, we present the

dimensions of these submodules along with their respective frequencies in Table 6.7.

Table 6.7: Submodules from 120 Permutation Module of L3(4) : 2

m # m # m #

0 1 37 1 84 1
1 1 46 2 85 1
10 2 55 1 99 1
19 1 56 1 100 1
20 1 64 1 101 1
21 1 65 1 110 1
35 1 74 2 119 1
36 1 83 1 120 1
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In Table 6.7, the column labeled m denotes the dimension of each submodule, while the

column labeled # indicates the frequency of submodules with that dimension. To provide

a visual representation of the hierarchical relationships between these submodules, we

present a lattice diagram in Figure 6.3.

Figure 6.3: Lattice diagram depicting the submodule structure of the permutation module
of degree 120

120

119 56

110 110 55

101 46 46

100 85 37

99 84 36 21

83 35 20

74 74 19

65 10 10

64 1

0

Through careful examination of the lattice diagram, we identify that the submodules of

dimensions 64 and 1 exhibit the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.

To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 6.8, offering a

compact representation of the submodules in terms of coding theory.
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Table 6.8: Binary Linear codes of small dimensions of 120 permutation Module of L3(4) : 2

Name Dimension parameters

C120,1 10 [120, 10, 40]2
C120,2 19 [120, 19, 32]2
C120,3 20 [120, 20, 30]2
C120,4 21 [120, 21, 30]2

We now examine the properties of codes C120,1, C120,2, C120,3, and C120,4:

For C120,1 and C120,2:

i . All codeword weights are divisible by 4.

ii . The dual codes C⊥120,1 and C⊥120,2 have minimum weights of 4 and 6 respectively.

Proposition 6.3.1. Let G be a primitive group of degree 120 of the extension group

L3(4) : 2. Then C120,1 and C120,2 are:

i . Doubly even

ii . Projective

Proof.

i . To establish the doubly even nature of C120,1 and C120,2, we note a fundamental

characteristic of their codewords: the weight of each codeword is invariably a mul-

tiple of 4. This property aligns precisely with the defining criterion for doubly even

codes.

ii . For projectivity, we note that the dual codes have minimum weights of 4 and

6 respectively. By definition, a code is projective if its dual code has minimum

distance at least 3. Both 4 and 6 exceed this threshold, thus C120,1 and C120,2 are

projective.
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For C120,3 and C120,4:

i . All codeword weights are divisible by 2.

ii . The dual codes C⊥120,3 and C⊥120,4 have minimum weights of 6 and 8 respectively.

Proposition 6.3.2. Let G be a primitive group of degree 120 of the extension group

L3(4) : 2. Then C120,3 and C120,4 are:

i . Even

ii . Projective

Proof.

i . To prove that C120,3 and C120,4 are even, we observe that all codeword weights are

divisible by 2, which is the definition of an even code.

ii . For projectivity, we note that the dual codes have minimum weights of 6 and 8

respectively. As both these values exceed 3, C120,3 and C120,4 are projective by the

same reasoning as in the previous proposition.

Combinatorial Designs from Minimum Weight Codewords in Codes C120,i

We determined designs formed by the set of coordinate positions of codewords with min-

imum weight wm in the codes C120,i. Table 6.9 provides information about these designs

in four columns:

i. Column 1: The code C120,i containing codewords of weight m.

ii. Column 2: The parameters of the 1-design Dwm formed by the supports of minimum

weight codewords.

iii. Column 3: The number of blocks in the design Dwm.

iv. Column 4: Whether the design Dwm is primitive or not under the action of the

automorphism group Aut(C120,i) of the code.
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Table 6.9: Combinatorial Designs from Minimum Weight Codewords in Codes C120,i of
L3(4) : 2

Code Design Number of blocks Primitive

[120, 10, 40]2 1-(120,40,7) 21 Yes
[120, 19, 32]2 1-(120,32,28) 105 No
[120, 20, 30]2 1-(120,30,14) 56 Yes
[120, 21, 30]2 1-(120,30,14) 56 Yes

Remark 6.3.3. From our analysis of the designs derived from the minimum weight code-

words, we observe:

i. The designs 1-(120,40,7) and 1-(120,30,14) exhibit primitive structure under the

action of their respective code automorphism groups.

ii. In contrast, the design 1-(120,32,28) is not primitive under this action.

iii. Notably, the codes [120, 20, 30]2 and [120, 21, 30]2, despite having different parame-

ters, both generate the same design 1-(120,30,14).

Theorem 6.3.4. Let G be the extension group L3(4) : 2 and Ω be the primitive G-set

of size 120 defined by the action of G on the cosets of its maximal subgroup L2(7) : 2.

Consider the non-trivial binary codes C120,1, C120,2, C120,3 and C120,4 obtained from the

permutation module of degree 120. The following properties hold:

i. The codes C120,1 and C120,2 are doubly even and projective binary codes with param-

eters [120, 10, 40] and [120, 19, 32] respectively. Their corresponding dual codes have

parameters [120, 110, 4] and [120, 101, 6].

ii. The codes C120,3 and C120,4 are even and projective binary codes with parameters

[120, 20, 30] and [120, 21, 30] respectively. Their dual codes have parameters [120, 100, 6]

and [120, 99, 6].

iii. Furthermore, C120,1, C120,3, and C120,4 generate primitive symmetric 1-designs with

parameters 1-(120, 40, 7), 1-(120,30,14), and 1-(120,30,14) respectively.
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6.4 Analysis of the 280-Dimensional Representation

We developed a 280-dimensional permutation module that remains unchanged when sub-

jected to the transformations induced by a symmetry-preserving algebraic structure G

operating on a discrete collection of elements Ω containing 280 distinct members. This

permutation module was chosen as the primary object of study, and a recursive process

was employed to identify all its submodules. The decomposition revealed that this 280-

dimensional permutation module splits into a total of 2604 distinct submodules. Table

6.10 provides a summary of these submodules, where the column labeled m indicates

the dimension of each submodule, and the column # specifies the count of submodules

corresponding to each dimension.
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Table 6.10: Submodules from 280 Permutation Module of L3(4) : 2 : 2

m # m # m # m # m # m #

0 1 69 3 108 20 144 39 178 6 220 2
1 1 70 9 109 46 145 45 179 21 223 2
9 2 71 29 110 53 146 17 180 1 224 7
10 2 72 7 111 35 147 3 181 31 225 19
18 1 73 4 112 7 150 2 182 9 226 7
19 3 74 2 151 3 187 1 227 3
20 3 78 2 113 1 152 9 188 9 228 3
21 1 79 6 114 7 153 49 189 53 229 3
25 2 80 32 115 21 154 67 190 63 230 1
26 2 81 16 116 45 155 59 191 51 234 10
34 3 82 9 117 21 156 11 192 7 235 10
35 13 83 3 118 11 157 1 193 1 236 6
36 9 84 3 119 19 159 2 195 1 243 3
37 3 85 1 120 7 160 7 196 3 244 9
44 6 87 1 121 2 161 19 197 3 245 13
45 10 88 7 123 1 162 13 198 9 246 3
46 10 89 51 124 11 163 21 199 16 254 2
50 1 90 63 125 59 164 45 200 32 255 2
51 3 91 53 126 67 165 22 201 6 259 1
52 3 92 9 127 49 166 7 202 2 260 3
53 3 93 1 128 9 167 1 206 2 261 3
54 7 98 9 129 3 168 7 207 4 262 1
55 19 99 31 130 2 169 35 208 7 270 2
56 7 100 51 133 3 170 53 209 29 271 2
57 2 101 21 134 17 171 46 210 9 279 1
60 2 102 6 135 45 172 20 211 3 280 1
61 6 103 1 136 39 173 36 214 2
62 6 104 7 137 8 174 43 215 3
64 3 105 35 138 2 175 35 216 3
65 3 106 43 142 2 176 7 218 6
66 2 107 36 143 8 177 1 219 6
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Figure 6.4: Lattice diagram portraying a subset of the submodule structure for the per-
mutation module of dimension 280

280

279 271 271 216

270
270 262 255 255 215 207

207

73
73 65 25 25 18 10

10

64 9 9 1

0

Examination of the partial lattice diagram revealed that the submodules with dimensions

64, 9, and 1 exhibit the property of irreducibility. Table 6.11 presents the binary linear

codes derived from the submodules of smaller dimensions within the 280-dimensional

permutation module of the group extension L3(4) : 2.

Table 6.11: Low-dimensional binary linear codes obtained from the permutation module
of degree 280 associated with L3(4) : 2

Name DimensionParameters Name Dimension Parameters

C280,1 9 [280, 9, 136]2 C280,9 21 [280, 21, 84]2
C280,2 10 [280, 10, 120]2 C280,10 25 [280, 25, 64]2
C280,3 18 [280, 18, 112]2 C280,11 26 [280, 26, 64]2
C280,4 19 [280, 19, 84]2
C280,5 19 [280, 19, 100]2
C280,6 19 [280, 19, 88]2
C280,7 20 [280, 20, 84]2
C280,8 20 [280, 20, 84]2

For the codes C280,1 through C280,16:

i. The weights of all codewords in these sixteen codes are divisible by 4.

ii. The dual codes C⊥280,1, C⊥280,2, · · · , C⊥280,16 have minimum weights of 3, 3, 4, 4, 4, 4,
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4, 4, 4, 4, 4, 4, 4, 4, 4 and 4 respectively.

Proposition 6.4.1. Consider G as a fundamental symmetry group of order 280 embedded

within the larger algebraic structure L3(4) : 2. The linear codes C280,1, C280,2, · · · , C280,16

derived from this group exhibit the following notable characteristics:

i. They are doubly even.

ii. They are projective.

Proof.

i. To prove that C280,1, C280,2, · · · , C280,16 are doubly even, we observe that all codeword

weights are divisible by 4, which satisfies the definition of a doubly even code.

ii. For projectivity, we note that the dual codes C⊥280,1, C⊥280,2, · · · , C⊥280,16 have minimum

weights of at least 3. By Definition, a code is projective if its dual code has a

minimum distance of at least 3. Therefore, C280,1, C280,2, · · · , C280,16 are projective.

Proposition 6.4.2. Consider G as a fundamental symmetry group of order 280 embedded

within the larger algebraic structure L3(4) : 2. The dual codes C⊥280,1 and C⊥280,2 possess

error-correcting capabilities allowing them to rectify up to 1 error, whereas the dual codes

C⊥280,1, C⊥280,2, · · · , C⊥280,16 demonstrate enhanced robustness, with the ability to correct up

to 1.5 errors.

Proof.

By applying Theorem 1.2.12, which states that a code with minimum distance d can

correct up to bd−1
2
c errors, we obtain the following: For C⊥280,1 and C⊥280,2: The minimum

distance d = 3. Thus, bd−1
2
c = b3−1

2
c = b1c = 1. For C⊥280,3, · · · , C⊥280,16: The minimum

distance d = 4. Thus, bd−1
2
c = b4−1

2
c = b1.5c = 1. Therefore, C⊥280,1 and C⊥280,2 can correct

up to 1 error, while C⊥280,3, · · · , C⊥280,16 can correct up to 1 error (as the floor function

rounds down 1.5 to 1).
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6.5 Combinatorial Designs from Minimum Weight Codewords in Codes C280,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C280,i. Table 6.12 presents the properties of these

designs, with each column providing the following information:

i. Column 1: The code C280,i containing the codewords of weight m.

ii. Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii. Column 3: The number of blocks in the design Dwm.

iv. Column 4: An indication of whether the design Dwm is primitive or not under the

action of the automorphism group Aut(C280,i) of the code.

Table 6.12: Combinatorial Designs from Minimum Weight Codewords in Codes C280,i of
L3(4) : 2

Code Design Number of
blocks

Primitive

[280, 9, 136]2 1-(280,136,136) 280 Yes
[280, 10, 120]2 1-(280,120,9) 21 Yes
[280, 18, 112]2 1-(280,112,1179) 2940 No
[280, 19, 84]2 1-(280,84,36) 120 Yes
[280, 19, 100]2 1-(280,100,240) 672 No
[280, 19, 88]2 1-(280,88,33) 105 No
[280, 20, 84]2 1-(280,84,108) 360 No
[280, 20, 84]2 1-(280,84,36) 120 Yes
[280, 21, 84]2 1-(280,84,108) 360 No
[280, 25, 64]2 1-(280,64,72) 315 No
[280, 26, 64]2 1-(280,64,72) 315 No

Remark 6.5.1. From our analysis of the designs derived from the minimum weight code-

words, we observe:

i. The designs 1-(280,136,136), 1-(280,120,9), and 1-(280,84,36) exhibit primitive

structure under the action of their respective code automorphism groups.
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ii. In contrast, the designs 1-(280,112,1179), 1-(280,100,240), 1-(280,88,33), 1-(280,84,108),

and 1-(280,64,72) are not primitive under this action.

iii. The codes [280, 19, 84]2 and [280, 20, 84]2, despite having different parameters, both

generate the same design 1-(280,84,36). Similarly, the codes [280, 25, 64]2 and [280, 26, 64]2

yield the identical design 1-(280,64,72).

Theorem 6.5.2. Let G be the extension group L3(4) : 2, and let Ω be the primitive G-set

of size 280 defined by the action of G on the cosets of its maximal subgroup 24× 32. Con-

sider the non-trivial binary codes C280,1, C280,2, . . . , C280,11 obtained from the permutation

module of degree 280. The following properties hold:

i. The codes C280,1 through C280,11 are doubly even and projective binary codes with pa-

rameters [280, 9, 136], [280, 10, 120], [280, 18, 112], [280, 19, 84], [280, 19, 100], [280, 19, 88],

[280, 20, 84], [280, 20, 84], [280, 21, 84], [280, 25, 64], and [280, 26, 64] respectively. Their

corresponding dual codes have parameters [280, 271, 3], [280, 270, 4], [280, 262, 4],

[280, 261, 4], [280, 261, 4], [280, 261, 4], [280, 260, 4], [280, 260, 4], [280, 259, 4], [280, 255, 4],

and [280, 254, 4].

ii. The codes C280,1, C280,2, C280,4, and C280,8, with parameters [280, 9, 136], [280, 10, 120],

[280, 19, 84], and [280, 20, 84] respectively, generate primitive symmetric 1-designs

with parameters 1-(280,136,136), 1-(280,120,9), 1-(280,84,36), and 1-(280,84,36).
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Chapter 7

Representations of Maximal Subgroups of L3(4) : 22

In this chapter, we explored the representations of the extension group L3(4) : 22. Our

investigation focused on five specific representations, corresponding to the degrees 56, 105,

120, 280, and 336. The key findings from our analysis are encapsulated in a comprehensive

theorem presented at the conclusion of each representation.

7.1 Analysis of the 56-Dimensional Representation

We developed a 56-dimensional permutation module that remains unchanged when sub-

jected to the transformations induced by a symmetry-preserving algebraic structure G

operating on a discrete collection of elements Ω containing 56 distinct members. This

permutation module served as our principal subject of inquiry, and we methodically un-

covered its complete submodule structure through an iterative decomposition process.

Our investigation revealed that this permutation module decomposes into a total of 10

distinct submodules. Table 7.1 provides an overview of these submodules, where the

column labeled m denotes the dimension of each submodule, and the column labeled #

indicates the frequency of submodules with that dimension.

Table 7.1: Submodules derived from the permutation module of degree 56 associated with
L3(4) : 22

m # m #

0 1 36 1
1 1 37 1
19 1 55 1
20 1 56 1
21 1
35 1

Figure 7.1 presents a visual representation of the lattice diagram, illustrating the hierar-
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chical relationships between the submodules derived from the 56-dimensional permutation

module.

Figure 7.1: Lattice diagram portraying the submodule structure of the permutation mod-
ule of degree 56

56

55

37

36 21

35 20

19

1

0

Through careful examination of the hierarchical structure depicted in the lattice diagram,

we identify that the one-dimensional submodule possesses the fundamental characteristic

of irreducibility. Table 7.2 presents the binary linear codes corresponding to the submod-

ules, offering a compact representation of these structures.

Table 7.2: Low-dimensional binary linear codes derived from the submodules of the per-
mutation module associated with L3(4) : 22

Name Dimensionparameters

C56,1 19 [56, 19, 16]2
C56,2 20 [56, 20, 10]2
C56,3 21 [56, 21, 10]2
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We analyzed the properties of several codes derived from the submodules. The following

observations were made:

For code C56,1:

i . All codeword weights are divisible by 4.

ii . The dual code C⊥56,1 has a minimum weight of 6.

Proposition 7.1.1. Consider G as a fundamental symmetry group of order 56 embedded

within the larger algebraic structure L3(4) : 22. The linear code C56,1 derived from this

group exhibits the following notable characteristics:

i . It is doubly even.

ii . It is projective.

Proof.

i . To prove C56,1 is doubly even, we examine its weight distribution. All non-zero

weights are divisible by 4, satisfying the definition of a doubly even code.

ii . For projectivity, we note that C⊥56,1 has a minimum weight of 6. As this exceeds

3, C56,1 is projective by definition.

For codes C56,2 and C56,3:

i . Every codeword in this code exhibits a weight that is invariably an even integer.

ii . The dual codes C⊥56,2 and C⊥56,3 have minimum weights of 6 and 8 respectively.

Proposition 7.1.2. Let G be a primitive group of degree 56 of the extension group L3(4) :

22. The codes C56,2 and C56,3 have the following properties:

i . They are even.
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ii . They are projective.

Proof.

i . For both C56,2 and C56,3, all codeword weights are divisible by 2. This property,

by definition, makes these codes even.

ii . The dual codes C⊥56,2 and C⊥56,3 have minimum weights of 6 and 8 respectively.

Both of these values exceed 3, which is the threshold for projectivity. Therefore,

both C56,2 and C56,3 are projective.

Combinatorial Designs Derived from Minimum Weight Codewords in C56,i

In our analysis, we focused on the combinatorial structures that emerge from the mini-

mum weight codewords in the codes C56,i. Specifically, we examined the designs formed

by the support sets of these codewords. Our findings are presented in Table 7.3, which

is organized into four columns. The first column identifies the code C56,i and its cor-

responding weight m. Column 2 delineates the defining characteristics of the emergent

1-design Dwm, encapsulating its structural properties in a concise parametric form. The

subsequent column, Column 3, enumerates the total number of blocks constituting each

design Dwm, offering insight into its combinatorial complexity. Finally, the fourth col-

umn indicates whether the design Dwm exhibits primitivity under the action of the code’s

automorphism group Aut(C).

Table 7.3: Combinatorial Designs Derived from Minimum Weight Codewords in C56,i of
L3(4) : 22

Code Design Number of
blocks

Primitive

[56, 19, 16]2 1-(56,16,492) 1722 No
[56, 20, 10]2 1-(56,10,10) 56 Yes
[56, 21, 10]2 1-(56,10,10) 56 Yes
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Remark 7.1.3. The analysis of designs derived from our codes revealed several notewor-

thy characteristics:

i. The design 1-(56,10,10) exhibits primitive properties and is generated by two distinct

codes: [56, 20, 10]2 and [56, 21, 10]2.

ii. In contrast, the design 1-(56,16,492) lacks primitivity.

Theorem 7.1.4. Let G symbolize the extension group L3(4) : 22, and Ω denote a primitive

algebraic structure of order 56, arising from the group G’s transformations on the quotient

space formed by the cosets of A6 : 22. We examine the significant binary codes C56,1, C56,2,

and C56,3 derived from the 56-dimensional permutation module. These codes exhibit the

following notable characteristics:

i. The code C56,1 is a self-orthogonal, geometrically significant linear error-correcting

code with parameters [56, 19, 16] over the binary field.

ii. C56,2 and C56,3 are even and projective binary codes with parameters [56, 20, 10] and

[56, 21, 10] respectively. Their corresponding dual codes have parameters [56, 36, 6]

and [56, 35, 8]. Moreover, these two codes each generate a primitive symmetric 1-

design with parameters 1-(56,10,10).

7.2 Analysis of the 105-Dimensional Representation

We developed a 105-dimensional permutation module that remains unchanged when sub-

jected to the transformations induced by a symmetry-preserving algebraic structure G

operating on a discrete collection of elements Ω containing 105 distinct members. This

permutation module served as our principal subject of inquiry, and we methodically un-

covered its complete submodule structure through an iterative decomposition process.

Our analysis revealed that this representation space decomposes into a total of 52 distinct

invariant subspaces. Table 7.4 provides a comprehensive list of the invariant submod-

ules of the permutation module over the finite field F2 for the representation of degree
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105. The table categorizes these submodules based on their size. The m column specifies

the size of each submodule category, while the # column reports how many submodules

belong to each size category.

Table 7.4: Submodules from 105 Permutation Module

m # m #

0 1 64 1
1 1 65 1
18 1 82 1
19 3 83 3
20 7 84 7
21 7 85 7
22 3 86 3
23 1 87 1
40 1 104 1
41 1 105 1

To further elucidate the properties of these submodules, we generated binary linear codes

corresponding to each submodule. Table 7.5 presents these codes, focusing on those of

smaller dimensions. This compact representation offers insight into the coding-theoretic

aspects of the submodules derived from the 105-dimensional permutation module.
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Table 7.5: Low-dimensional binary linear codes derived from the 105 permutation module

Name Dimensionparameters

C105,1 18 [105, 18, 32]2
C105,2 19 [105, 19, 32]2
C105,3 19 [105, 19, 32]2
C105,4 19 [105, 19, 25]2
C105,5 20 [105, 20, 28]2
C105,6 20 [105, 20, 28]2
C105,7 20 [105, 20, 25]2
C105,8 21 [105, 21, 28]2
C105,9 21 [105, 21, 28]2
C105,10 21 [105, 21, 28]2
C105,11 21 [105, 21, 25]2
C105,12 22 [105, 22, 28]2
C105,13 22 [105, 22, 25]2
C105,14 23 [105, 23, 25]2

We conducted a detailed analysis of the properties of selected codes derived from the

submodules. Our findings are as follows:

For codes C105,1, C105,2, and C105,5:

i . All codeword weights are divisible by 4.

ii . The dual codes C⊥105,1, C⊥105,2, and C⊥105,5 have minimum weights of 5 each.

Proposition 7.2.1. Consider a particular group G, which is an extension of the group

L3(4) : 22 acting on a set of 105 elements. Under this setup, the codes C105,1, C105,2, and

C105,5 possess the following properties:

i . Doubly even

ii . Projective

Proof.

i . To show that C105,1, C105,2, and C105,5 are doubly even, we note that each codeword

in these codes has a weight (i.e., the number of non-zero elements) that is a multiple
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of 4. This property of all weights being divisible by 4 is precisely what characterizes

a doubly even code.

ii . For projectivity, we note that the dual codes have minimum weights of 5. By

definition, a code is projective if its dual code has minimum distance at least 3. As

5 exceeds this threshold, C105,1, C105,2, and C105,5 are projective.

For codes C105,10 and C105,12:

i . All codeword weights are divisible by 2.

ii . C⊥105,10 and C⊥105,12 have minimum weights of 5 each.

Proposition 7.2.2. Let G be a primitive group of degree 105 of the extension group

L3(4) : 22. Then C105,10 and C105,12 are:

i . Even

ii . Projective

Proof.

i . To prove that C105,10 and C105,12 are even, we observe that all codeword weights

are divisible by 2, which is the definition of an even code.

ii . For projectivity, we note that the dual codes have minimum weights of 5. As this

exceeds 3, C105,10 and C105,12 are projective by the same reasoning as in the previous

proposition.

For codes C105,3, C105,4, C105,6, C105,7, C105,8, C105,9, C105,11, and C105,13: The dual codes

C⊥105,3, C⊥105,4, C⊥105,6, C⊥105,7, C⊥105,8, C⊥105,9, C⊥105,11, and C⊥105,13 all have minimum weights of

6.
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Proposition 7.2.3. Let G be a primitive group of degree 105 of the extension group L3(4) :

22. Then C105,3, C105,4, C105,6, C105,7, C105,8, C105,9, C105,11, and C105,13 are projective.

Proof.

For each code C105,i in this set, its dual code C⊥105,i has a minimum weight of 6. By

definition, a code is projective if its dual code has a minimum distance of at least 3. As

6 exceeds this threshold, all these codes are projective.

Combinatorial Designs Derived from Minimum Weight Codewords in C105,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C105,i. Table 7.6 presents the properties of these designs,

with each column providing the following information:

i. Column 1: The code C105,i containing the codewords of weight m.

ii. Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii. Column 3: The number of blocks in the design Dwm.

iv. Column 4: Specifies whether the design Dwm retains a high degree of symmetry

(i.e., is primitive ) or exhibits reduced symmetry (i.e., is not primitive ) when the

code’s symmetry group, denoted Aut(C), is applied to it.
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Table 7.6: Combinatorial Designs from Minimum Weight Codewords in Codes C105,i

Code Design Number of blocks Primitive

[105, 18, 32]2 1-(105,32,32) 105 Yes
[105, 19, 32]2 1-(105,28,32) 120 Yes
[105, 19, 32]2 1-(105,32,32) 105 Yes
[105, 19, 25]2 1-(105,25,10) 42 No
[105, 20, 28]2 1-(105,28,32) 120 Yes
[105, 20, 28]2 1-(105,28,32) 120 Yes
[105, 20, 25]2 1-(105,25,10) 42 No
[105, 21, 28]2 1-(105,28,32) 120 Yes
[105, 21, 28]2 1-(105,28,96) 360 No
[105, 21, 28]2 1-(105,28,96) 360 No
[105, 21, 25]2 1-(105,25,10) 42 No
[105, 22, 28]2 1-(105,28,96) 360 No
[105, 22, 25]2 1-(105,25,10) 42 No
[105, 23, 25]2 1-(105,25,10) 42 No

Remark 7.2.4. Our analysis of the designs derived from the codes revealed several notable

patterns:

i. The designs 1-(105,32,32) and 1-(105,28,32) exhibit primitive structure.

ii. In contrast, the designs 1-(105,25,10) and 1-(105,28,96) lack primitivity.

iii. Multiple codes generate identical designs:

• The codes [105, 18, 32]2 and [105, 19, 32]2 both produce the design 1-(105,32,32).

• The codes [105, 19, 32]2, [105, 20, 28]2, and [105, 21, 28]2 all generate the design 1-

(105,28,32).

Theorem 7.2.5. Let G be the group L3(4) : 22 extended by another group, and let Ω be a

special set of 105 elements on which G acts. This set Ω is constructed by dividing the group

28 × 3 into equally-sized subsets, called cosets, and considering the action of G on these

cosets. From this setup, we obtain the important binary codes C105,1, C105,2, . . . , C105,13 by

studying the permutations of the 105 elements induced by the action of G. These codes

have the following notable properties:
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i. C105,1, C105,2, and C105,3 are doubly even and projective binary codes with parameters

[105, 18, 32], [105, 19, 32], and [105, 20, 28] respectively. Their corresponding dual

codes have parameters [105, 87, 5], [105, 86, 5], and [105, 85, 5].

ii. C105,10 and C105,12 are even and projective binary codes with parameters [105, 21, 28]

and [105, 22, 28]. Their dual codes have parameters [105, 84, 5] and [105, 83, 5] re-

spectively.

iii. The codes C105,3, C105,4, C105,5, C105,6, C105,7, C105,8, C105,9, C105,11, and C105,13 are

projective with varying parameters. Their dual codes all have minimum distance 6.

iv. The codes C105,1, C105,2, C105,3, C105,5, C105,6, and C105,8 generate primitive symmet-

ric 1-designs with parameters 1-(105, 32, 32) or 1-(105, 28, 32).

7.3 Analysis of the 120-Dimensional Representation

We built a mathematical structure called a permutation module, which has 120 dimen-

sions. This module has a special property: it remains unchanged when a certain group of

permutations, denoted by G, rearranges the elements of a set Ω that contains 120 objects.

We focused our attention on this permutation module and systematically broke it down

into smaller, more manageable pieces called submodules. To do this, we applied a step-by-

step process that gradually unveiled all the submodules hiding within the larger structure.

Our investigation revealed that this permutation module decomposes into a total of 20

distinct submodules. To provide a clear overview of this decomposition, we present the

dimensions of these submodules along with their respective frequencies in Table 7.7.
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Table 7.7: Submodules from 120 Permutation Module of L3(4) : 22

m # m #

0 1 64 1
1 1 65 1
19 1 83 1
20 1 84 1
21 1 85 1
35 1 99 1
36 1 100 1
37 1 101 1
55 1 119 1
56 1 120 1

The submodules identified from the decomposition of the 120-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure

7.2 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.
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.

Figure 7.2: Lattice diagram depicting the submodule structure of the permutation module
of degree 120

120

119 56

101 55

100 85 37

99 84 36 21

83 35 20

65 19

64 1

0

Through careful examination of the lattice diagram, we identify that the submodules of

dimensions 64 and 1 exhibit the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.

To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 7.8, offering a

compact representation of the submodules.
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Table 7.8: Low-dimensional binary linear codes derived from the 120-dimensional permu-
tation module of L3(4) : 22

Name Dimensionparameters
C120,1 19 [120, 19, 32]2
C120,2 20 [120, 20, 30]2
C120,3 21 [120, 21, 30]2

We now examine the properties of codes C120,1, C120,2, and C120,3:

For C120,1:

i . All codeword weights are divisible by 4.

ii . The dual code C⊥120,1 has a minimum weight of 6.

Proposition 7.3.1. Let G be a primitive group of degree 120 of the extension group

L3(4) : 22. Then C120,1 is:

i . Doubly even

ii . Projective

Proof.

i . To show that C120,1 is doubly even, we note that the weight of each codeword (i.e.,

the number of non-zero elements in the codeword) is always a multiple of 4. This

property of all weights being divisible by 4 is precisely what defines a doubly even

code.

ii . For projectivity, we note that the dual code has minimum weight of 6. By

definition, a code is projective if its dual code has minimum distance at least 3. As

6 exceeds this threshold, C120,1 is projective.
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For C120,2 and C120,3:

i . All codeword weights are divisible by 2.

ii . The dual codes C⊥120,2 and C⊥120,3 have minimum weights of 6 each.

Proposition 7.3.2. Let G be a primitive group of degree 120 of the extension group

L3(4) : 22. Then C120,2 and C120,3 are:

i . Even

ii . Projective

Proof.

i . To prove that C120,2 and C120,3 are even, we observe that all codeword weights are

divisible by 2, which is the definition of an even code.

ii . For projectivity, we note that the dual codes have minimum weights of 6. As both

these values exceed 3, C120,2 and C120,3 are projective by the same reasoning as in

the previous proposition.

Combinatorial Designs from Minimum Weight Codewords in Codes C120,i

We determined designs formed by the set of coordinate positions of codewords with min-

imum weight wm in the codes C120,i. Table 7.9 provides information about these designs

in four columns:

i . Column 1: The code C120,i containing codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of mini-

mum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv . Column 4: Whether the design Dwm is primitive or not under the action of the

automorphism group Aut(C120,i) of the code.
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Table 7.9: Combinatorial Designs from Minimum Weight Codewords in Codes C120,i of
L3(4) : 22

Code Design Number of blocks Primitive

[120, 19, 32]2 1-(120,32,28) 105 Yes
[120, 20, 30]2 1-(120,30,14) 56 Yes
[120, 21, 30]2 1-(120,30,14) 56 Yes

Remark 7.3.3. From our analysis of the designs derived from the minimum weight code-

words, we observe:

i. The designs 1-(120,32,28) and 1-(120,30,14) exhibit primitive structure under the

action of their respective code automorphism groups.

ii. Notably, the codes [120, 20, 30]2 and [120, 21, 30]2, despite having different parame-

ters, both generate the same design 1-(120,30,14).

Theorem 7.3.4. Let G be the extension group L3(4) : 22 and Ω be the primitive G-

set of size 120 defined by the action of G on the cosets of its maximal subgroup L2(7) :

22. Consider the non-trivial binary codes C120,1, C120,2, and C120,3 obtained from the

permutation module of degree 120. The following properties hold:

i. The code C120,1 is a doubly even and projective [120, 19, 32] binary code. Its dual

code has parameters [120, 101, 6].

ii. The codes C120,2 and C120,3 are even and projective binary codes with parameters

[120, 20, 30] and [120, 21, 30] respectively. Their corresponding dual codes have pa-

rameters [120, 100, 6] and [120, 99, 6].

iii. Furthermore, C120,1, C120,2 and C120,3 generate primitive symmetric 1-designs with

parameters 1-(120, 32, 28), 1-(120,30,14), and 1-(120,30,14) respectively.
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7.4 Analysis of the 280-Dimensional Representation

We created a mathematical object called a permutation module, which has 280 dimen-

sions. This module has an interesting property: it stays the same even when a specific

group of permutations, called G, shuffles around the elements of a set Ω that has 280

items. We decided to focus our attention on this permutation module and investigate its

internal structure. To do this, we used a method that allowed us to gradually uncover all

the smaller pieces, known as submodules, that make up the larger module.

Our investigation revealed that this permutation module decomposes into a total of 516

distinct submodules. Table 7.10 provides a comprehensive overview of these submodules.

In this table, the column labeled m denotes the dimension of each submodule, while the

column labeled # indicates the frequency of submodules with that dimension.
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Table 7.10: Submodules derived from the 280-dimensional permutation module of L3(4) :
22

m # m # m # m # m #

0 1 91 13 129 1 175 11 243 1
1 1 92 3 133 1 176 3 244 3
18 1 93 1 134 3 177 1 245 3
19 3 98 1 135 5 179 1 246 1
20 3 99 3 136 1 180 3 259 1
21 1 100 3 144 1 181 3 260 3
34 1 101 3 145 5 182 1 261 3
35 3 103 1 146 3 187 1 262 1
36 3 104 3 147 1 188 3 279 1
37 1 105 11 151 1 189 13 280 1
50 1 106 11 152 3 190 13
51 3 107 12 153 13 191 13
52 3 108 6 154 13 192 3
53 1 109 12 155 13 193 1
54 1 110 11 156 3 195 1
55 3 111 11 157 1 196 3
56 1 112 3 160 1 197 3
64 1 113 1 161 3 198 1
65 1 114 1 162 1 208 1
69 1 115 3 163 1 209 5
70 3 116 3 164 3 210 3
71 5 117 1 165 3 211 1
72 1 118 1 166 1 215 1
82 1 119 3 167 1 216 1
83 3 120 1 168 3 224 1
84 3 123 1 169 11 225 3
85 1 124 3 170 11 226 1
87 1 125 13 171 12 227 1
88 3 126 13 172 6 228 3
89 13 127 13 173 12 229 3
90 13 128 3 174 11 230 1

To visualize the complex relationships between these submodules, we constructed a partial

lattice diagram. Figure 7.3 presents this diagram, offering insights into the hierarchical

structure of the submodules within the 280-dimensional permutation module.
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Figure 7.3: Lattice diagram portraying a subset of the submodule structure for the per-
mutation module of dimension 280

280

279 262 216

261 261 261 246 215 198

82 65 34 19 19 19

64 18 1

0

To further elucidate the properties of these submodules, we generated binary linear codes

corresponding to each submodule. Table 7.11 presents a selection of these codes, focus-

ing on those of smaller dimensions. This compact representation offers insight into the

coding-theoretic aspects of the submodules derived from the 280-dimensional permutation

module.

Table 7.11: Low-dimensional binary linear codes obtained from the permutation module
of degree 280 associated with L3(4) : 22

Name DimensionParameters

C280,1 18 [280, 18, 112]2
C280,2 19 [280, 19, 100]2
C280,3 19 [280, 19, 88]2
C280,4 19 [280, 19, 84]2
C280,5 20 [280, 20, 84]2
C280,6 20 [280, 20, 84]2
C280,7 21 [280, 21, 84]2
C280,8 34 [280, 34, 64]2
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For the codes C280,1 through C280,8:

i . The weights of all codewords in these eight codes were divisible by 4.

ii . The dual codes C⊥280,1, C⊥280,2, · · · , C⊥280,8 each had a minimum weight of 4.

iii . The dual codes C⊥280,1, C⊥280,2, · · · , C⊥280,8 were capable of correcting up to 1.5 errors.

Proposition 7.4.1. Consider a group G that has a highly symmetric action on a set of

280 elements. This group G is related to another group called L3(4) : 22 , its extension.

For this particular setup, the codes C280,1, C280,2, · · · , C280,8 have the following interesting

properties:

i . They are doubly even.

ii . They are projective and can correct up to 1.5 errors.

Proof. The doubly even property and the projectivity along with the error-correcting

capability of the codes can be deduced from the fundamental properties of linear codes

and their duals.

Combinatorial Designs Derived from Minimum Weight Codewords in C280,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C280,i. Table 7.12 presents the properties of these

designs, with each column providing the following information:

i . Column 1: The code C280,i containing the codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv . Column 4: An indication of whether the design Dwm is primitive or not under the

action of the automorphism group Aut(C280,i) of the code.

82



Table 7.12: Combinatorial Designs from Minimum Weight Codewords in Codes C280,i of
L3(4) : 22

Code Design Number of blocks Primitive

[280, 18, 112]2 1-(280,112,1176) 2940 No
[280, 19, 100]2 1-(280,100,136) 672 No
[280, 19, 88]2 1-(280,88,33) 105 Yes
[280, 19, 84]2 1-(280,84,36) 120 Yes
[280, 20, 84]2 1-(280,84,36) 120 Yes
[280, 20, 84]2 1-(280,84,108) 360 No
[280, 21, 84]2 1-(280,84,108) 360 No

Remark 7.4.2. The analysis of designs derived from the codes revealed several noteworthy

characteristics:

i . The designs 1-(280,88,33) and 1-(280,84,36) exhibit primitive properties.

ii . In contrast, the designs 1-(280,112,1179), 1-(280,100,240), and 1-(280,84,108)

lack primitivity.

iii . The codes [280, 19, 84]2 and [280, 20, 84]2 generate the same design, 1-(280,84,36).

Similarly, the codes [280, 20, 84]2 and [280, 21, 84]2 produce the identical design, 1-

(280,84,108).

Theorem 7.4.3. Let G be the group L3(4) : 22 extended by another group, and let Ω

be a special set of 280 elements that G acts on in a highly symmetric way. This set Ω

is constructed by dividing the group 25 × 32 into equally-sized subsets called cosets and

considering the action of G on these cosets. By studying the way G permutes the 280

elements of Ω, we can construct important binary codes C280,1, C280,2, · · · , C280,7. These

codes have the following notable properties:

i . C280,1 through C280,7 are doubly even and projective binary codes with parameters

[280, 18, 112], [280, 19, 100], [280, 19, 88], [280, 19, 84], [280, 20, 84], [280, 20, 84], and

[280, 21, 84] respectively. Their corresponding dual codes have parameters [280, 262, 4],

[280, 261, 4], [280, 261, 4], [280, 261, 4], [280, 260, 4], [280, 260, 4], and [280, 259, 4].
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ii . The codes C280,3, C280,4, and C280,5, with parameters [280, 19, 88], [280, 19, 84], and

[280, 20, 84] respectively, generate primitive symmetric 1-designs with parameters 1-

(280,88,33), 1-(280,84,36), and 1-(280,84,36).

7.5 Analysis of the 336-Dimensional Representation

We created a mathematical object called a permutation module, which has 336 dimen-

sions. This module has an interesting property: it stays the same even when a specific

group of permutations, called G, shuffles around the elements of a set Ω that has 336

items. This permutation module served as our primary object of study, and we system-

atically identified all its submodules through recursive analysis.

Our investigation revealed that this 336-dimensional permutation module decomposes

into a total of 5188 distinct submodules. To visualize the complex relationships between

these submodules, we constructed a partial lattice diagram, presented in Figure 7.4. This

diagram offers insights into the hierarchical structure of a subset of the submodules within

the 336-dimensional permutation module.
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Figure 7.4: Lattice diagram portraying a subset of the submodule structure for the per-
mutation module of dimension 336

336

335 320 318 272

319 317 317 317 302 271 256 254

82 80 65 34 19 19 19 17

64 18 16 1

0

Combinatorial Designs Derived from Minimum Weight Codewords in C336,i

In our analysis, we focused on the combinatorial structures that emerge from the mini-

mum weight codewords in the codes C336,i. Specifically, we examined the designs formed

by the support sets of these codewords. Our findings are presented in Table 7.13, which

is organized into five columns. The first column identifies the code C336,i . The second

column identifies the code’s parameters. Column 3 delineates the defining characteristics

of the emergent 1-design Dwm, encapsulating its structural properties in a concise para-

metric form. The subsequent column, Column 4, enumerates the total number of blocks

constituting each design Dwm, offering insight into its combinatorial complexity. Finally,

the fifth column indicates whether the design Dwm exhibits primitivity under the action

of the code’s automorphism group Aut(C).
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Table 7.13: Combinatorial Designs Derived from Minimum Weight Codewords in C336,i

of L3(4) : 22

Code Parameter Design Number of blocks Primitive

C336,1 [336, 16, 120]2 1-(336,120,120) 336 Yes
C336,2 [336, 17, 120]2 1-(336,120,120) 336 Yes
C336,3 [336, 18, 120]2 1-(336,120,120) 336 Yes
C336,4 [336, 19, 120]2 1-(336,120,120) 336 Yes
C336,5 [336, 19, 80]2 1-(336,80,10) 42 No
C336,6 [336, 19, 120]2 1-(336,120,140) 392 No
C336,7 [336, 20, 120]2 1-(336,120,180) 504 No
C336,8 [336, 20, 120]2 1-(336,120,140) 392 No
C336,9 [336, 20, 112]2 1-(336,112,80) 240 No
C336,10 [336, 20, 80]2 1-(336,80,10) 42 No
C336,11 [336, 20, 96]2 1-(336,96,32) 112 No
C336,12 [336, 21, 96]2 1-(336,96,32) 112 No
C336,13 [336, 21, 112]2 1-(336,112,80) 240 No
C336,14 [336, 21, 80]2 1-(336,80,10) 42 No
C336,15 [336, 22, 96]2 1-(336,96,96) 336 Yes
C336,16 [336, 22, 96]2 1-(336,96,32) 112 No
C336,17 [336, 22, 80]2 1-(336,80,10) 42 No
C336,18 [336, 23, 80]2 1-(336,80,10) 42 No

We analyzed the codes and designs derived from the permutation module of degree 336.

Our findings are as follows:

For the codes C336,1 through C336,18

i . All codeword weights in these 18 codes were divisible by 4.

ii . The dual codes C⊥336,1, C⊥336,2, · · · , C⊥336,18 had minimum weights of 3, 4, · · · , 4

respectively.

iii . The dual codes C⊥336,1, C⊥336,2, · · · , C⊥336,18 were capable of correcting up to 1 error.

Proposition 7.5.1. Consider a group G that has a highly symmetric action on a set of

336 elements. This group G is related to another group called L3(4) : 22 , its extension.

Then the codes C336,1, C336,2, · · · , C336,18 possess the following properties:

i . They are doubly even.
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ii . They are projective, and all can correct up to 1.5 errors, except C336,1 which can

correct up to 1 error.

Proof.

i . To prove that C336,1, C336,2, · · · , C336,18 are doubly even, we observe that all

codeword weights are divisible by 4. This property, by definition, makes these codes

doubly even.

ii . For projectivity, we note that the dual codes C⊥336,1, C⊥336,2, · · · , C⊥336,18 have

minimum weights of at least 3. A linear code is projective if and only if its dual

code has minimum distance at least 3. Therefore, these codes are projective. For the

error-correcting capability, we apply the result that a code with minimum distance

d can correct up to bd−1
2
c errors. The dual codes have minimum weights of 3 or 4,

so they can correct up to 1 or 1.5 errors respectively. Thus, all codes except C336,1

can correct up to 1.5 errors, while C336,1 can correct up to 1 error.

Remark 7.5.2. The analysis of designs derived from the codes revealed several noteworthy

characteristics:

i . The designs 1-(336,120,120) and 1-(336,96,96) exhibit primitive properties.

ii . Multiple codes generate identical designs:

The codes [336, 16, 120]2, [336, 17, 120]2, [336, 18, 120]2, and [336, 19, 120]2 all pro-

duce the design 1-(336,120,120). The codes [336, 19, 80]2, [336, 20, 80]2, [336, 21, 80]2,

[336, 22, 80]2, and [336, 23, 80]2 yield the design 1-(336,80,10). The codes [336, 19, 120]2

and [336, 20, 120]2 generate the design 1-(336,120,140). The codes [336, 20, 96]2,

[336, 21, 96]2, and [336, 22, 96]2 result in the design 1-(336,96,32). The codes [336, 20, 112]2

and [336, 21, 112]2 produce the design 1-(336,112,80).
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Theorem 7.5.3. Let G be the group L3(4) : 22 extended by another group, and let Ω

be a special set of 336 elements that G acts on in a highly symmetric way. This set Ω

is constructed by dividing the group 22 : A5 into equally-sized subsets called cosets and

considering the action of G on these cosets. By studying the way G permutes the 336

elements of Ω, we can construct important binary codes C336,1, C336,2, · · · , C336,18. These

codes have the following notable properties:

i . C336,1 through C336,18 are doubly even and projective binary codes with parameters

[336, 16, 120], [336, 17, 120], · · · , [336, 23, 80] respectively. Their corresponding dual

codes have parameters [336, 320, 3], [336, 319, 4], · · · , [336, 313, 4].

ii . The codes C336,1, C336,2, C336,3, C336,4, and C336,15, with parameters [336, 16, 120],

[336, 17, 120], [336, 18, 120], [336, 19, 120], and [336, 22, 96] respectively, generate prim-

itive symmetric 1-designs with parameters 1-(336,120,120), 1-(336,120,120), 1-(336,120,120),

1-(336,120,120), and 1-(336,96,96).
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Chapter 8

Representations of Maximal Subgroups of L3(3) : 2

In this chapter, we explored the representations of the extension group L3(3) : 2. Our

investigation focused on four specific representations, corresponding to the degrees 52, 117,

144, and 234. The key findings from our analysis are encapsulated in a comprehensive

theorem presented at the conclusion of each representation.

8.1 Analysis of the 52-Dimensional Representation

We created a mathematical object called a permutation module, which has 52 dimensions.

This module has an interesting property: it stays the same even when a specific group

of permutations, called G, shuffles around the elements of a set Ω that has 52 items.

This permutation module served as our primary object of study, and we systematically

identified all its submodules through recursive analysis.

Our investigation revealed that this permutation module decomposes into a total of 12

distinct submodules. To provide a clear overview of this decomposition, we present the

dimensions of these submodules along with their respective frequencies in Table 8.1.

Table 8.1: Submodules derived from the 52-dimensional permutation module

m # m #

0 1 27 1
1 1 28 1
12 1 39 1
13 1 40 1
24 1 51 1
25 1 52 1

The submodules identified from the decomposition of the 52-dimensional permutation

module serve as the fundamental components for constructing a submodule lattice. Figure
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8.1 presents a visual representation of this lattice, illustrating the hierarchical relationships

between the submodules.

Figure 8.1: Lattice diagram portraying the submodule structure for the permutation
module of dimension 52

52

51 40

39 28 25

27 24 13

12 1

0

Through careful examination of the lattice diagram, we identify that the submodules of

dimensions 12 and 1 exhibit the property of irreducibility. This observation has significant

implications for understanding the fundamental building blocks of the module’s structure.

To further elucidate the properties of these submodules, we generate binary linear codes

corresponding to each submodule. These codes are presented in Table 8.2, offering a

compact representation of the submodules in coding science.
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Table 8.2: Low-dimensional binary linear codes obtained from the permutation module
of degree 52

Code
Name

Dimensionparameters

C52,1 12 [52, 12, 16]2
C52,2 13 [52, 13, 12]2
C52,3 24 [52, 24, 6]2
C52,4 25 [52, 25, 4]2
C52,5 27 [52, 27, 6]2
C52,6 28 [52, 28, 6]2

We now examine the properties of these codes.

For the codes C52,1 and C52,2:

i . All codeword weights were divisible by 4.

ii . The dual codes C⊥52,1 and C⊥52,2 each had a minimum weight of 4.

iii . C52,1 contained no non-trivial submodules, while C52,2 had two submodules of

dimensions 12 and 1.

Proposition 8.1.1. Let G be a primitive group of degree 52 in the extension group L3(3) :

2. Then the codes C52,1 and C52,2 possess the following properties:

i . They are doubly even.

ii . They are projective.

iii . C52,1 is irreducible, while C52,2 is decomposable.

Proof.

i . To prove that C52,1 and C52,2 are doubly even, we observe that all codeword weights

are divisible by 4. This property, by definition, makes these codes doubly even.

ii . For projectivity, we note that the dual codes C⊥52,1 and C⊥52,2 have minimum weights

of 4. A linear code is projective if and only if its dual code has minimum distance

at least 3. As 4 exceeds this threshold, C52,1 and C52,2 are projective.
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iii . The irreducibility of C52,1 and the decomposability of C52,2 can be deduced from

the submodule structure depicted in Figure 8.1. C52,1 has no non-trivial submod-

ules, implying irreducibility, while C52,2 has two proper submodules, confirming

decomposability.

For the codes C52,3, C52,4, and C52,5:

i . All codeword weights were divisible by 2.

ii . The dual codes C⊥52,3, C⊥52,4, and C⊥52,5 had minimum weights of 6, 6, and 4 respec-

tively.

iii . The dual code C⊥52,5 was capable of correcting up to 1 error.

Proposition 8.1.2. Let G be a primitive group of degree 52 in the extension group L3(3) :

2. Then the codes C52,3, C52,4, and C52,5 possess the following properties:

i . They are even.

ii . They are projective.

iii . C52,5 can correct up to 1.5 errors.

Proof.

i . To prove that C52,3, C52,4, and C52,5 are even, we observe that all codeword weights

are divisible by 2. This property, by definition, makes these codes even.

ii . For projectivity, we note that the dual codes C⊥52,3, C⊥52,4, and C⊥52,5 have minimum

weights of 6, 6, and 4 respectively. As these values exceed 3, the codes are projective.

iii . The error-correcting capability of C52,5 follows from the fact that its dual code C⊥52,5

has a minimum weight of 4. Applying the result that a code with minimum distance

d can correct up to bd−1
2
c errors, we find that C⊥52,5 can correct up to b4−1

2
c = 1.5

errors. Consequently, C52,5 can correct up to 1.5 errors.
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For the code C52,6:

i . The dual code C⊥52,6 had a minimum weight of 6.

Proposition 8.1.3. Let G be a primitive group of degree 52 in the extension group L3(3) :

2. Then the code C52,6 is projective.

Proof.

To prove the projectivity of C52,6, we observe that its dual code C⊥52,6 has a minimum

weight of 6. As this value exceeds 3, C52,6 is projective by the definition of projective

codes.

Combinatorial Designs Derived from Minimum Weight Codewords in C52,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C52,i. Table 8.3 presents the properties of these designs,

with each column providing the following information:

i . Column 1: The code C52,i containing the codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv . Column 4: An indication of whether the design Dwm is primitive or not under the

action of the automorphism group Aut(C52,i) of the code.
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Table 8.3: Combinatorial Designs from Minimum Weight Codewords in Codes C52,i

Code Design Number of blocks Primitive

[52, 12, 16]2 1-(52,16,36) 117 Yes
[52, 13, 12]2 1-(52,12,6) 26 No
[52, 24, 6]2 1-(52,6,6) 52 Yes
[52, 25, 4]2 1-(52,4,2) 26 No
[52, 27, 6]2 1-(52,6,27) 234 Yes
[52, 28, 6]2 1-(52,6,27) 234 Yes

Remark 8.1.4. i . The designs 1-(52,16,36),1-(52,6,6) and 1-(52,6,27) are primi-

tive.

ii . The designs 1-(52,12,6) and 1-(52,4,2) are not primitive.

iii . The codes [52, 27, 6]2 and [52, 28, 6]2 generate same design,1-(52,6,27).

Theorem 8.1.5. Let G be a group of extension L3(3) : 2 and Ω be the primitive G-

set of size 52 defined by the action on the maximal subgroup of 23 × 32. Consider the

following non-trivial binary codes obtained from the permutation module of degree 52:

C52,1, C52,2, C52,3, C52,4, C52,5 and C52,6.

i . C52,1 is a doubly even and projective [52, 12, 16 ] binary code. Its dual code is [

52, 40 , 4 ]. Furthermore , C52,1 is irreducible .

ii . C52,2 is a doubly even and projective [52, 13, 12 ] binary code. Its dual code is [

52, 39 , 4 ] . Furthermore , C51,2 is decomposable .

iii . C52,3, C52,4 and C52,5 are even and projective [52,24, 6] , [52, 25, 4] and [ 52,27, 6]

binary codes. Their dual codes are [52,28, 6] , [52, 27, 6] and [ 52,25, 4], respectively.

iv . C52,6 is a projective [52, 28, 6 ] binary code. Its dual is [ 52, 24 , 6 ].

v . Furthermore, C52,1, C52,3, C52,5 and C52,6 are binary codes with parameters [52,12,

16] , [52, 24, 6] , [ 52,27, 6] and [ 52, 28,6] respectively . They generate primitive
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symmetric -1- designs 1-( 52, 16, 36), 1-( 52, 6, 6), 1-( 52, 6, 27 ) and 1-( 52, 6,

27 ) respectively, within the G-set Ω defined by the action on the maximal subgroup

of 23 × 32.

8.2 Analysis of the 117-Dimensional Representation

We created a mathematical object called a permutation module, which has 117 dimen-

sions. This module has an interesting property: it stays the same even when a specific

group of permutations, called G, shuffles around the elements of a set Ω that has 117

items. This permutation module served as our primary object of study, and we system-

atically identified all its submodules through recursive analysis.

Our investigation revealed that this permutation module decomposes into a total of 108

distinct submodules. To provide a clear overview of this decomposition, we present the

dimensions of these submodules along with their respective frequencies in Table 8.4.

Table 8.4: Submodules from 117 Permutation Module

m # m # m #
0 1 41 1 78 7
1 1 50 1 79 1
12 1 51 7 89 1
13 3 52 8 90 3
14 1 53 4 91 2
24 1 54 1 92 3
25 3 63 1 93 1
26 2 64 4 103 1
27 3 65 8 104 3
28 1 66 7 105 1
38 1 67 1 116 1
39 7 76 1 117 1
40 7 77 7
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To provide a visual representation of the hierarchical relationships between these submod-

ules, we present a subset of the submodule structure in Figure 8.2.

Figure 8.2: Lattice diagram portraying a subset of the submodule structure for the per-
mutation module of dimension 117

117

116 105 91

104 104 104 93 90 90 90 79 65

52 38 27 27 27 24 13 13 13

26 12 1

0

Some binary linear codes of small dimensions of this representation are given in the Table

8.5.
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Table 8.5: Some Binary Linear codes of small dimensions of degree 117

Code
Name

DimensionParameters

C117,1 12 [117, 12, 36]2
C117,2 13 [117, 13, 36]2
C117,3 13 [117, 13, 36]2
C117,4 13 [117, 13, 36]2
C117,5 14 [117, 14, 36]2
C117,6 24 [117, 24, 16]2
C117,7 25 [117, 25, 16]2
C117,8 25 [117, 25, 9]2
C117,9 26 [117, 26, 9]2
C117,10 26 [117, 26, 24]2
C117,11 27 [117, 27, 24]2
C117,12 27 [117, 27, 24]2
C117,13 28 [117, 28, 24]2

The codes C117,2, C117,3, and C117,4 were found to be isomorphic and generated the same

codes. Despite this isomorphism, C117,2 possessed an additional property that distin-

guished it from the other two codes, as demonstrated in the following propositions.

For the codes C117,1 and C117,10:

i . All codeword weights were divisible by 4.

ii . The dual codes C⊥117,1 and C⊥117,10 had minimum weights of 3 and 6 respectively.

iii . Both C117,1 and C117,10 contained no non-trivial submodules.

iv . The dual code C⊥117,1 had a minimum weight of 3.

Proposition 8.2.1. Let G be a primitive group of degree 117 in the extension group

L3(3) : 2. Then the codes C117,1 and C117,10 possess the following properties:

i . They are doubly even.

ii . They are projective.

iii . They are irreducible.
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iv . C117,1 can correct up to 1 error.

Proof.

i . To prove that C117,1 and C117,10 are doubly even, we observe that all codeword

weights are divisible by 4. This property, by definition, makes these codes doubly

even.

ii . For projectivity, we note that the dual codes C⊥117,1 and C⊥117,10 have minimum

weights of 3 and 6 respectively. As these values exceed 3, the codes C117,1 and

C117,10 are projective.

iii . The irreducibility of C117,1 and C117,10 follows from the absence of non-trivial

submodules, as evident from their submodule structure.

iv . The error-correcting capability of C117,1 is a consequence of its dual code C⊥117,1

having a minimum weight of 3. Applying the result that a code with minimum

distance d can correct up to bd−1
2
c errors, we find that C⊥117, 1 can correct up to

b3−1
2
c = 1 error. Consequently, C117,1 can correct up to 1 error.

For the codes C117,2, C117,6, and C117,7:

i . All codeword weights were divisible by 2.

ii . The dual codes C⊥117,2, C⊥117,6, and C⊥117,7 each had a minimum weight of 4.

Proposition 8.2.2. Let G be a primitive group of degree 117 in the extension group

L3(3) : 2. Then the codes C117,2, C117,6, and C117,7 possess the following properties:

i . They are even.

ii . They are projective and can correct up to 1.5 errors.
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Proof.

i . To prove that C117,2, C117,6, and C117,7 are even, we observe that all codeword

weights are divisible by 2. This property, by definition, makes these codes even.

ii . For projectivity and error-correcting capability, we note that the dual codes C⊥117,2,

C⊥117,6, and C⊥117,7 have minimum weights of 4. As this value exceeds 3, the codes are

projective. Moreover, a code with minimum distance 4 can correct up to b4−1
2
c = 1.5

errors.

For the code C117,11:

i . All codeword weights were divisible by 2.

ii . The dual code C⊥117,11 had a minimum weight of 6.

iii . C117,11 had two submodules of dimensions twenty six and one.

Proposition 8.2.3. Consider a group G that has a highly symmetric action on a set of

117 elements. This group G is related to another group called L3(3) : 2 , its extension.

For this particular setup, the code C117,11 has the following interesting properties:

i . It is even.

ii . It is projective.

iii . It is decomposable.

Proof.

i . To prove that C117,11 is even, we observe that all codeword weights are divisible

by 2. This property, by definition, makes this code even.

ii . For projectivity, we note that the dual code C⊥117,11 has a minimum weight of 6.

As this value exceeds 3, C117,11 is projective.
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iii . The decomposability of C117,11 follows from the presence of two non-trivial sub-

modules of dimensions 26 and 1, as evident from its submodule structure depicted

in Figure 8.2.

For the codes C117,3, C117,4, C117,5, C117,8, C117,12, an C117,13:

i . The dual codes C⊥117,3, C⊥117,4, C⊥117,5, C⊥117,8, C⊥117,12, and C⊥117,13 each had a minimum

weight of 4.

Proposition 8.2.4. Let G be a primitive group of degree 117 in the extension group

L3(3) : 2. Then the codes C117,3, C117,4, C117,5, C117,8, C117,12, and C117,13 are projective

and can correct up to 1.5 errors.

Proof.

To prove the projectivity and error-correcting capability of these codes, we observe that

their dual codes have a minimum weight of 4. As this value exceeds 3, the codes are

projective. Moreover, a code with minimum distance 4 can correct up to b4−1
2
c = 1.5

errors.

For the code C117,9:

i . The dual code C⊥117,9 had a minimum weight of 4.

ii . C117,9 contained no submodules.

Proposition 8.2.5. Let G be a primitive group of degree 117 in the extension group

L3(3) : 2. Then the code C117,9 possesses the following properties:

i . It is projective and can correct up to 1.5 errors.

ii . It is irreducible.
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Proof.

i . The projectivity and error-correcting capability of C117,9 follow from its dual code

C⊥117,9 having a minimum weight of 4. As this value exceeds 3, C117,9 is projective.

Moreover, a code with minimum distance 4 can correct up to b4−1
2
c = 1.5 errors.

ii . The irreducibility of C117,9 is evident from the absence of non-trivial submodules

in its structure.

Combinatorial Designs Derived from Minimum Weight Codewords in C117,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C117,i. Table 8.6 presents the properties of these designs,

with each column providing the following information:

i . Column 1: The code C117,i containing the codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv. Column 4: Specifies whether the design Dwm retains a high degree of symmetry

(i.e., is primitive ) or exhibits reduced symmetry (i.e., is not primitive ) when the

code’s symmetry group, denoted Aut(C), is applied to it.
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Table 8.6: Combinatorial Designs from Minimum Weight Codewords in Codes C117,i

Code Design Number of blocks Primitive

[117, 12, 36]2 1-(117,36,16) 52 Yes
[117, 13, 36]2 1-(117,36,16) 52 Yes
[117, 14, 36]2 1-(117,36,16) 52 Yes
[117, 24, 36]2 1-(117,16,16) 117 Yes
[117, 25, 36]2 1-(117,25,16) 117 Yes
[117, 25, 9]2 1-(117,9,2) 26 No
[117, 26, 9]2 1-(117,9,2) 26 No

[117, 26, 24]2 1-(117,24,80) 390 No
[117, 27, 24]2 1-(117,24,80) 390 No
[117, 28, 24]2 1-(117,24,80) 390 No

Remark 8.2.6.

i .The designs 1-(117,36,16),1-(117,16,16) and 1-(117,25,16) are primitive.

ii . The designs 1-(117,9,2) and 1-(117,24,80) are not primitive.

iii . The codes [117, 12, 36]2, [117, 13, 36]2 and [117, 14, 36]2 generate same design,1-

(117,36,16). The codes [117, 25, 9]2 and [117, 26, 9]2 generate same design,1-(117,9,2).The

codes [117, 26, 24]2 , [117, 27, 24]2 and [117, 28, 24]2 generate same design,1-(117,24,80).

Theorem 8.2.7. Let G be a group of extension L3(3) : 2 and Ω be the primitive G- set

of degree 117 defined by the action on the maximal subgroup of 25 × 3. Consider the

following non-trivial binary codes obtained from the permutation module of degree 117:

C117,1 through C117,13.

i . C117,1 and C117,10 are doubly even and projective [117, 12, 36 ] and [117, 26 ,24

] binary codes , respectively. Their dual codes are [ 117, 105, 3 ] and [117, 91, 6].

Furthermore, C117,1 and C117,10 are irreducible .

ii . C117,2, C117,6 and C117,7 are even and projective [117, 13, 36 ] , [ 117, 24, 16]

and [117, 25 ,16 ] binary codes , respectively. Their dual codes are [117, 104, 4 ] ,

[117,93,4] and [117, 92, 4].
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iii . C117,11 is even and projective [117, 27, 24 ] binary code. Its dual code is [ 117, 90

, 6 ] . Furthermore , C117,11 is decomposable .

iv . C117,3, C117,4, C117,5, C117,8, C117,12 and C117,13 are projective [117, 13, 36 ] , [ 117,

13, 36] , [117, 14 ,36 ] , [117, 25, 9 ] , [ 117, 27, 24] and [117, 28 ,24 ] binary

codes , respectively. Their dual codes are [117, 104, 3 ] , [117,104,4] , [117,103,

4],[117,92,4 ] , [117, 90,6] , [117, 89, 6].

v . C117,9 is a projective [117, 26, 9 ] binary code. Its dual codes is [117, 91, 4].

Furthermore , C117,9 is irreducible .

iv . Additionally, C117,1 through C117,7 are binary codes with parameters [ 117, 12, 36

], [117, 13, 36 ] , [ 117, 13, 36] , [117, 13, 36] ,[117, 14 ,36 ] , [117, 24, 16 ] and

[ 117, 25, 16] respectively. They generate primitive symmetric -1- designs 1-( 117,

36, 16), 1-( 117, 36, 16), 1-( 117, 36, 16), 1-( 117, 36, 16), 1-( 117, 36, 16), 1-(

117, 16, 16), and 1-( 117, 16, 16) respectively, within the G-set Ω defined by the

action on the maximal subgroup of 25× 3 .

8.3 Analysis of the 144-Dimensional Representation

We created a mathematical object called a permutation module, which has 144 dimen-

sions. This module has an interesting property: it stays the same even when a specific

group of permutations, called G, shuffles around the elements of a set Ω that has 144 items.

This permutation module served as our primary object of study, and we systematically

identified all its submodules through recursive analysis. Our investigation revealed that

this 144-dimensional permutation module decomposes into a total of 34 distinct submod-

ules. To provide a clear overview of this decomposition, we present the dimensions of

these submodules along with their respective frequencies in Table 8.7.
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Table 8.7: Submodules from 144 Permutation Module

m # m # m #

0 1 53 1 92 1
1 1 64 1 103 1
13 1 65 1 104 3
14 1 66 1 105 1
27 1 67 1 116 1
28 1 77 1 117 1
39 1 78 1 130 1
40 3 79 1 131 1
41 1 80 1 143 1
52 1 91 1 144 1

To provide a visual representation of the hierarchical relationships between these submod-

ules, we present the submodule structure in Figure 8.3.

Figure 8.3: Lattice diagram portraying the submodule structure for the permutation
module of dimension 144

144

143 80

113 117 79

130 116 105 67 53

104 104 104 66 52 41

103 92 78 40 40 40

91 77 39 28 14

65 27 13

64 1

0
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Some binary linear codes of small dimensions of this representation are given in Table 8.8.

Table 8.8: Some Binary Linear codes of small dimensions of degree 144

Code
Name

DimensionParameters

C144,1 13 [144, 13, 48]2
C144,2 14 [144, 14, 48]2
C144,3 27 [144, 27, 40]2
C144,4 28 [144, 28, 36]2

We analyzed the properties of several codes derived from the representation of degree 144.

For the codes C144,1, C144,3, and C144,4:

i . All codeword weights were divisible by 4.

ii . The codes C144,1, C144,3, and C144,4 had minimum weights of 4, 6, and 6 respectively.

Proposition 8.3.1. Let G be a primitive group of degree 144 in the extension group

L3(3) : 2. Then the codes C144,1, C144,3, and C144,4 possess the following properties:

i . They are doubly even.

ii . They are projective.

Proof.

i . To prove that C144,1, C144,3 and C144,4 are doubly even, we observe that all codeword

weights are divisible by 4. This property, by definition, makes these codes doubly

even.

ii . For projectivity, we note that the dual codes have minimum weights of 4, 6, and

6 respectively. As these values exceed 3, the codes are projective.
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For the code C144,2:

i . All codeword weights were divisible by 2.

ii . The dual code C⊥144,2 had a minimum weight of 4.

Proposition 8.3.2. Let G be a primitive group of degree 144 in the extension group

L3(3) : 2. Then the code C144,2 possesses the following properties:

i . It is even.

ii . It is projective.

Proof.

i . To prove that C144,2 is even, we observe that all codeword weights are divisible by

2. This property, by definition, makes this code even.

ii . For projectivity, we note that the dual code C⊥144,2 has a minimum weight of 4. As

this value exceeds 3, C144,2 is projective.

Combinatorial Designs Derived from Minimum Weight Codewords in C144,i

We examined the combinatorial designs formed by the supports of the codewords with

minimum weight wm in the codes C144,i. Table 8.9 presents the properties of these designs,

with each column providing the following information:

i . Column 1: The code C144,i containing the codewords of weight m.

ii . Column 2: The parameters of the 1-design Dwm formed by the supports of the

minimum weight codewords.

iii . Column 3: The number of blocks in the design Dwm.

iv . Column 4: Specifies whether the design Dwm retains a high degree of symmetry

(i.e., is primitive ) or exhibits reduced symmetry (i.e., is not primitive ) when the

code’s symmetry group, denoted Aut(C), is applied to it..
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Table 8.9: Combinatorial Designs from Minimum Weight Codewords in Codes C144,i

Code Design No. of blocks Primitive

[144, 13, 48]21-
(144,48,39)

117 Yes

[144, 14, 48]21-
(144,48,39)

117 Yes

[144, 27, 40]21-
(144,40,455)

1638 No

[144, 28, 36]21-
(144,36,13)

52 Yes

Remark 8.3.3.

i .The designs 1-(144,48,39) and 1-(144,36,13) are primitive.

ii .The designs 1-(144,40,455) is not primitive.

iii . The codes [144, 13, 48]2 and [144, 14, 48]2 generate same design,1-(144, 48,39).

Theorem 8.3.4. Let G be the group L3(3) : 2 extended by another group, and let Ω be

a special set of 144 elements that G acts on in a highly symmetric way. This set Ω is

constructed by dividing the group 2 × 3 × 13 into equally-sized subsets called cosets and

considering the action of G on these cosets. By studying the way G permutes the 144

elements of Ω, we can construct important binary codes C144,1, C144,2, C144,3 and C144,4.

These codes have the following notable properties:

i . C144,1, C144,3 and C144,4 are doubly even and projective [144, 13, 48 ] , [144, 27,

40] and [144, 28,36 ] binary codes, respectively . Their dual codes are [144, 131, 4

] , [144, 117, 6] and [144, 116,6 ] respectively.

ii . C144,2 is an even and projective [144, 14, 48 ] binary code. Its dual code is [144,

130, 4 ] .

iii . Furthermore, C144,1, C144,3 and C144,4 are binary codes that generate primitive

symmetric -1- designs 1-( 144, 48, 39), 1-( 144, 48, 39) and 1-( 144, 36, 13),
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respectively, within the G-set Ω defined by the action on the maximal subgroup of

2× 3× 13.

8.4 Analysis of the 234-Dimensional Representation

We created a mathematical object called a permutation module, which has 234 dimen-

sions. This module has an interesting property: it stays the same even when a specific

group of permutations, called G, shuffles around the elements of a set Ω that has 234

items. This permutation module served as our primary object of study, and we system-

atically identified all its submodules through recursive analysis.

Our investigation revealed that this 234-dimensional permutation module decomposes into

a total of 1608 distinct submodules. To provide a clear overview of this decomposition,

we present the dimensions of these submodules along with their respective frequencies in

Table 8.10.
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Table 8.10: Smaller modules from 234 Permutation Module

m # m # m # m #

0 1 81 3 144 18 221 3
1 1 88 1 145 6 222 1
12 1 89 6 146 1 233 1
13 3 90 18 153 3 234 1
14 1 91 37 154 14
24 1 92 59 155 28
25 3 93 31 156 57
26 4 94 3 157 34
27 9 102 4 158 4
28 3 103 40 166 1
38 3 104 76 167 19
39 21 105 35 168 55
40 21 106 6 169 33
41 3 107 1 170 7
50 3 114 3 171 1
51 21 115 22 179 1
52 24 116 35 180 11
53 18 117 36 181 18
54 11 118 35 182 24
55 1 119 22 183 21
63 1 120 3 184 3
64 7 127 1 193 3
65 33 128 6 194 21
66 55 129 35 195 21
67 19 130 76 196 3
68 1 131 40 206 3
76 4 132 4 207 9
77 34 140 3 208 4
78 57 141 31 209 3
79 28 142 59 210 1
80 14 143 36 220 1

Some binary linear codes of small dimensions and designs of this representation are given

in Table 8.11.

Combinatorial Designs from Minimum Weight Codewords in Codes C234,i

We determined designs held by the support of codewords of minimum weight wm in C234,i.

In table 8.11, columns one, two, three, four and five respectively represent the codes C234,i
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of weight m , parameters of the code, the parameters of the 1-designs Dwm, the number

of blocks of Dwm, and tests whether or not a design Dwm, is primitive under the action

of Aut(C).

Table 8.11: Combinatorial Designs from Minimum Weight Codewords in Codes C234,i.

Code Parameter Design Number of
blocks

Primitive

C234,1 [234, 12, 72]2 1-(234,72,8) 26 No
C234,2 [234, 13, 72]2 1-(234,72,8) 26 No
C234,3 [234, 13, 72]2 1-(234,72,8) 26 No
C234,4 [234, 14, 72]2 1-(234,72,8) 26 No
C234,5 [234, 24, 54]2 1-(234,54,12) 52 Yes
C234,6 [234, 25, 54]2 1-(234,54,18) 78 No
C234,7 [234, 25, 54]2 1-(234,54,12) 52 Yes
C234,8 [234, 26, 54]2 1-(234,54,18) 78 No
C234,9 [234, 26, 36]2 1-(234,36,12) 78 No
C234,10 [234, 26, 52]2 1-(234,52,96) 432 No
C234,11 [234, 26, 56]2 (234,56,56) 234 Yes
C234,12 [234, 27, 27]2 1-(234,27,6) 52 Yes
C234,13 [234, 27, 36]2 1-(234,36,12) 78 No
C234,14 [234, 27, 52]2 1-(234,52,96) 432 No
C234,15 [234, 27, 52]2 1-(234,52,96) 432 No
C234,16 [234, 27, 52]2 1-(234,52,96) 432 No
C234,17 [234, 27, 56]2 1-(234,56,56) 234 Yes
C234,18 [234, 27, 56]2 1-(234,56,56) 234 Yes
C234,19 [234, 27, 56]2 1-(234,56,56) 234 Yes
C234,20 [234, 27, 36]2 1-(234,36,12) 78 No

Our analysis of the 234-dimensional permutation module yielded several codes and de-

signs. The results are as follows:

Examining C234,1, C234,9, C234,10, C234,11 and C234,19, we found:

1. All codewords in these five codes have weights divisible by 4.

2. The dual codes C⊥234,1, C⊥234,9, C⊥234,10, C⊥234,11, and C⊥234,19 all possess a minimum

weight of 3.

Proposition 8.4.1. For a primitive group G of degree 234 in the extension group L3(3) :

2, the codes C234,1, C234,9, C234,10, C234,11 and C234,19 exhibit the following properties:
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i . They are doubly even.

ii . They are projective with the ability to correct up to 1 error.

Proof.

i . The doubly even property is confirmed by the fact that all codeword weights are

multiples of 4.

ii . Projectivity is established by the minimum weight of 3 in their dual codes. The

error correction capability follows from the relation b(d− 1)/2c = b(3− 1)/2c = 1,

where d is the minimum distance.

For the codes C234,2, C234,3, C234,4, C234,5, C234,6, C234,7, C234,8, C234,13, C234,14, C234,17 and

C234,18, we observed:

i . All codewords in these eleven codes have weights divisible by 2.

ii . Their respective dual codes have minimum weights of 4, 3, 4, 4, 4, 4, 4, 4, 4, 3,

and 4.

Proposition 8.4.2. Given a primitive group G of degree 234 in L3(3) : 2, the aforemen-

tioned codes possess the following characteristics:

i . They are even.

ii . They are projective.

Proof.

i . The even property is evident from the divisibility of all codeword weights by 2.

ii . Projectivity is confirmed by the minimum weights of their dual codes, which are

all at least 3.
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Regarding C234,12, C234,15, C234,16 and C234,20:

Their dual codes exhibit minimum weights of 3, 3, 4, and 4 respectively.

Proposition 8.4.3. For a primitive group G of degree 234 in L3(3) : 2, the codes C234,12,

C234,15, C234,16 and C234,20 are projective.

Proof. The projectivity of these codes is established by the minimum weights of their dual

codes, which are all at least 3.

Theorem 8.4.4. Let G be an extension group L3(3) : 2 and Ω be the primitive G-set of

degree 234 defined by its action on the maximal subgroup 24 × 3. The non-trivial binary

codes C234,1 through C234,20, derived from the 234-dimensional permutation module, exhibit

the following properties:

i . C234,1, C234,9, C234,10, C234,11 and C234,19 are doubly even and projective binary

codes with parameters [234, 12, 72], [234, 26, 36], [234, 26, 52], [234, 26, 56], and

[234, 27, 56] respectively. Their dual codes have parameters [234, 222, 3], [234,

208, 3], [234, 208, 3], [234, 208, 3], and [234, 207, 4].

ii . C234,2, C234,3, C234,4, C234,5, C234,6, C234,7, C234,8, C234,13, C234,14, C234,17 and C234,18

are even and projective binary codes. Their parameters and those of their dual codes

are as listed previously.

iii . C234,12, C234,15, C234,16 and C234,20 are projective binary codes with parameters

[234, 27, 27], [234, 27, 52], [234, 27, 52], and [234, 27, 36] respectively. Their dual

codes have parameters [234, 207, 3], [234, 207, 3], [234, 207, 4], and [234, 207, 4].

iv . Within Ω, the codes C234,5, C234,7, C234,11, C234,12, C234,17, C234,18 and C234,19

generate primitive symmetric 1-designs with parameters 1-(234, 54, 12), 1-(234,

54, 12), 1-(234, 56, 56), 1-(234, 27, 6), 1-(234, 56, 56), 1-(234, 56, 56), and

1-(234, 56, 56) respectively.
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Chapter 9

Conclusions, Recommendations, and Future Research Directions

9.1 Overview

This chapter summarizes the key findings, offers recommendations based on our research,

and proposes avenues for future investigation.

9.2 Key Findings

Our research successfully classified the maximal subgroups of four extension groups using

the Modular Representation Method and MAGMA computational tool. We identified:

i . 8 subgroups for O+
8 (2) : 2

ii . 4 subgroups for L3(4) : 2

iii . 5 subgroups for L3(4) : 22

iv . 4 subgroups for L3(3) : 2

The varying number and structure of these subgroups highlight the distinct algebraic

properties of each group.

We then enumerated submodules derived from these maximal subgroups. Notable results

include:

i . For O+
8 (2) : 2: 12, 28, and 106 submodules for permutation modules of degrees

120, 135, and 960 respectively.

ii . For L3(4) : 2: 12, 14, 28, and 2604 submodules for degrees 21, 56, 120, and 280

respectively.

iii . For L3(4) : 22: 10, 52, 20, 516, and 5188 submodules for degrees 56, 105, 120, 280,

and 336 respectively.
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iv . For L3(3) : 2: 12, 108, 34, and 1608 submodules for degrees 52, 117, 144, and 234

respectively.

The construction of submodule lattices revealed intricate internal structures and relation-

ships between invariant subspaces, allowing us to deduce properties such as irreducibility

and decomposability of the corresponding codes.

Our analysis using the Modular Representation Method and MAGMA yielded doubly

even, projective, irreducible, and decomposable codes with robust error-correcting capa-

bilities. We also discovered numerous combinatorial designs from the minimum weight

codewords, many of which exhibited primitive properties, indicating rich symmetrical

structures.

9.3 Recommendations

i . We strongly recommend that stakeholders in the communication sector consider

adopting our constructed codes for their robust error detection and correction ca-

pabilities.

ii . We encourage computer scientists and engineers in communication and data stor-

age fields to explore our findings for deeper insights into both theoretical aspects

and practical applications of these codes and designs.

9.4 Future Research Directions

i . Expansion to larger groups: Apply the modular representation method to more

extensive and complex group structures to further our understanding of their prop-

erties and potential applications.

ii . Cryptographic applications: Investigate the potential of this method in developing

or enhancing secure cryptographic schemes.
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iii . Symmetry analysis: Delve deeper into the symmetry properties exhibited by

group actions on these linear codes and designs, exploring their implications for

coding theory, design theory, and related mathematical fields.

iv . Interdisciplinary connections: Explore links between this work and other areas of

mathematics such as algebraic number theory, algebraic geometry, and representa-

tion theory.

v . Method generalization: Extend the modular representation method to other types

of groups and mathematical objects, broadening its applicability in various areas of

mathematics and engineering.
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Appendix

REPRESENTATION OF GROUP S62

G < x, y >:=PermutationGroup< 28|\| [1,3,2,4,5,7,6,8,10,9,11,14,13,12,15,16,19,18,17,22,21,\
[2,3,4,5,6,8,9,1,11,12,13,15,16,7,17,18,20,14,21,19,23,24,25,26,27,28,22]

>;

print ”Group G is S6(2) < Sym(28)”

REPRESENTATION OF GROUP L3(4)

G < xy >:=PermutationGroup< |\|120 [1,4,6,2,9,3,12 10,5,8,17,7,20,21,23,24,11,27,29,13,14

\
[ 2,5,1,7,3,10,13,4,14,16,6,18,8,22,9,11,25,28,12,30,23,15,34,35,38, 17,39,19,42,45,20,21,48,32,51,2

36,70,72,37,59,40,46,55,41,47,43,78,44,73,75,81,49,83,50,85,52,54,57,89,60, 91,76,63,93,80,67,82

103,106,101,113,94,95,107,97,115,98,116,100,105,114,110,112,119,117,120,118]

>;

print ”Group G is L3(4) < sym(120)”

REPRESENTATION OF GROUP L3(3).

G < xy >:=PermutationGroup<144 |\| [2,1,5,6,3,4,11,12,13,14,7,8, 9,10, 23,24,25,26,27,28,29

\ [

,\[ 1,3,4,2,7,9,8,5,10,6,15,17,19,21,16,11,18,12,20,13,22,14,23,31,33, 34,36,25,38,40,32,24,28,35,26,37,2

65,67,50,43,56,44,58,46,60,47,62,48,64,49,66,51,68,52,83,85,87,89,91,74,93, 95,96,97,99,101,76,

102, 80, 115, 117, 118, 119, 121, 105, 110, 112, 123, 109, 125, 104, 116, 103, 114, 108, 120, 106, 122, 107, 124, 111, 126

113,127,133,129,130,135,137,134,128,136,131,138,132,141,139,140,143,144,142]

>;

print ”Group G is L3(4) < sym(144)” CODES FROM MAXIMAL SUBGROUPS

M:=MaximalSubgroups(G);M; H:=M[1]‘subgroup;

a1,a2,a3:=CosetAction(G,H); g1:=PermutationModule(a2,GF(2) ); g1;

SubmoduleLattice(g1);

m:=Submodules(g1);m;

# m

[#m[i]: i in [1.. # m]];

c1:=LinearCode(Morphism(m[1],g1));

c2:=LinearCode(Morphism(m[2],g1));

c3:=LinearCode(Morphism(m[3],g1));

c4:=LinearCode(Morphism(m[4],g1));
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c5:=LinearCode(Morphism(m[5],g1));

c6:=LinearCode(Morphism(m[6],g1));

c7:=LinearCode(Morphism(m[7],g1));

c8:=LinearCode(Morphism(m[8],g1));

c9:=LinearCode(Morphism(m[9],g1));

c10:=LinearCode(Morphism(m[10],g1));

c11:=LinearCode(Morphism(m[11],g1));

c12:=LinearCode(Morphism(m[12],g1));

c13:=LinearCode(Morphism(m[13],g1));

c14:=LinearCode(Morphism(m[14],g1));

c15:=LinearCode(Morphism(m[15],g1)); A:=c3;

C:=AutomorphismGroup(A);

CompositionFactors(C);

orbs:=Orbits(C); # orbs;

N:=MaximalSubgroups(C);N; P:=N[2]‘subgroup; CompositionFactors(P);

SubmoduleLattice (N);

N:=MaximalSubgroups(C);N; P:=N[2]‘subgroup;

a1,a2,a3:=CosetAction(C,P);

g1:=PermutationModule(a2,GF(2) ); g1;

SubmoduleLattice(g1); SubmoduleLattice(g1);

m:=Submodules(g1);m;

#m;

[#m[i]: i in [1..#m]];

c1:=LinearCode(Morphism(m[1],g1));

c2:=LinearCode(Morphism(m[2],g1));

c3:=LinearCode(Morphism(m[3],g1));

c4:=LinearCode(Morphism(m[4],g1));

c5:=LinearCode(Morphism(m[5],g1));

c6:=LinearCode(Morphism(m[6],g1));

c7:=LinearCode(Morphism(m[7],g1));

c8:=LinearCode(Morphism(m[8],g1));

c9:=LinearCode(Morphism(m[9],g1));
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c10:=LinearCode(Morphism(m[10],g1));

A:=c1; [Length(A), Dimension(A),

MinimumDistance(A)]; B:=Dual(c1); [Length(B),

Dimension(B), MinimumDistance(B)];

WeightDistribution(A);

DESIGNS FROM CODES USING MINIMUM DISTANCE

wt:=WeightDistribution(A); wt:=36;

wt;

wds := Words(A, wt);

]wds;

D:= Design 1,Length (A) — wds ; D;
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