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ABSTRACT

In this study a mathematical model that investigates reinfection and vacci-
nation on the dynamics of COVID-19 was considered. The model particularly
takes into account the waning rate of immunity after vaccination as well as ad-
ministration of booster vaccine. Positivity and boundedness of solutions of the
model was proved as well as both the basic and effective reproduction numbers
of the model determined by use of the next generation matrix. Further, using
the effective reproduction number, the minimum critical value of individuals to
be vaccinated for containment of the disease was determined. It was found that
the value is less for a perfect vaccine compared to an imperfect vaccine. Sensitiv-
ity and elasticity of the effective reproduction number was also carried out and
it was observed that the effective reproduction number is mostly affected by the
recovery rate of individuals and least affected by natural death. Both disease free
equilibrium and endemic equilibrium were determined as well as their stability an-
alyzed using Routh Hurwitz stability criteria and Lyapunov stability. Numerical
simulation was performed and we established that re-infection and waning rate
of immunity contribute a lot in the disease staying in the population. In addi-
tion, results from numerical simulations show that booster vaccination increases
the period of protection against the disease. Administration of booster vaccines
is thus recommended for management of Corona Virus disease. The results show
that reinfection, the waning rate of immunity after vaccination and the waning of
immunity after infection contributes much on the diseases staying in the popula-
tion.
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CHAPTER ONE

INTRODUCTION

In this chapter, section 1.1 describes the background information about COVID-

19 as well as mathematical background related to our study, section 1.2 describes

the statement of the problem while section 1.3 takes care of objectives of the study

and methods used in the study. We conclude the chapter with justification of the

study in section 1.4

1.1 Background of the Study

1.1.1 Background information about COVID-19

Coronavirus disease 2019 (COVID-19) is a novel corona virus that was first iden-

tified in December 2019 in China (“WHO coronavirus(COVID-19) Dashboard”,

2024). It is caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) (Baloch et al., 2020). COVID-19 is likened to the severe acute respiratory

syndrome(SARS) which occurred in 2003 (Wilder-Smith et al., 2020). However

COVID-19 is more contagious than SARS of 2003 as within 3 months of outbreak

there were more than 100,000 confirmed cases and more than 3000 death cases

(Wilder-Smith et al., 2020). In addition, in February 2020, it was found that, the

reproduction number for COVID-19 was about 3.28, which is higher as compared

to 2.79 for (SARS) (Wilder-Smith et al., 2020). As much as the virus is a threat

to everyone, symptoms vary from person to person. Most individuals experience

fever, coughing and shortness of breath, while others may face severe symptoms

such as damage to the lungs, acute respiratory failure (Baloch et al., 2020) or

others end up dying. Other symptoms include, fatigue, muscle aches, headache,

loss of taste, sore throat, nausea and runny nose. The virus has since spread to

over 100 countries resulting in approximately 775 million confirmed cases and 7
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million deaths world wide (“WHO coronavirus(COVID-19) Dashboard”, 2024).

The latest cases as from 5th July, 2024 to 5th August, 2024 are about 200,000 con-

firmed cases and 3000 death cases(“WHO coronavirus(COVID-19) Dashboard”,

2024). The earlier outbreak caused widespread panic and disruption across the

globe with many countries implementing strict travel restrictions and lockdown

measures in an attempt to contain the virus. The virus has a long incubation

period and is highly contagious. The incubation period as in (Del Rio & Malani,

2020) and (Baloch et al., 2020) is about 2-14 days. One thing to note about the

virus is that it can spread through asymptomatic carriers which makes it difficult

to identify and isolate infected individuals. More cases from the disease and more

so for patients requiring a lot of health care, for example those who are diabetic

may result in potentially healthy systems being overwhelmed (Baloch et al., 2020).

Several interventions were put into place in order to reduce the spread of the

disease. One potential solution that was proposed is the implementation of non-

pharmaceutical measures which include; wearing face mask, public event bans,

school and workplace closure, keeping social distance, public transport shutdowns,

restrictions on internal movement, international travel controls and stay at home

requirements (Wilder-Smith et al., 2020). Implementation of these measures have

shown to be effective in containing the spread of other viruses, such as SARS-Cov

(Chen et al., 2005). And hence these measures can also be used to contain the

spread of COVID-19 since they fall in the same group. However, implementation

of these measures can negatively affect the economy and other health outcomes,

including mental health and chronic conditions (Adams et al., 2020) . Vaccination

is the common method that is relied on apart from the measures above. Vacci-

nation not only provides protection for the individual it also provides it for the

community at large since it keeps the effective reproduction rate below the level

which would allow an epidemic to start, hence the so called ’herd immunity’ (Mur-

ray, 2002). As virus constantly change, including the one that causes COVID-19,

there is need for people to get vaccinated since the changes can lead to emergence
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of variants that can increase the risk of reinfection (Hall et al., 2022). The emer-

gence of new variants for the disease is discussed in more details in (Kumar et al.,

2024). This explains why COVID-19 remains a global health concern.

Studies show that after vaccination or infection the body produces protective

immune responses as antibodies increase in concentration for weeks and months

(Hall et al., 2022). By three months people gain a robust antibody response.

By six months, antibodies start declining leading to reduction in immunity. This

means people will be susceptible to the disease again due to ’waning immunity’.

In Hall et al. (2011) a recent study from the U.K. Health Security Agency showed

that protection against infection from two doses of vaccine may last for up to six

months. That means the effectiveness of the vaccine decreased by about seven

months. This may be due to the emergence of new strains of the virus. The

study in Hall et al. (2011) indicates that the protective immunity acquired from

the combination of a COVID-19 infection followed by vaccination is very potent

and is effective for more than a year. This urges people to be vaccinated more

so those who had a prior infection. With the evidence from Hall et al. (2011)

that protective immunity changes with time after vaccination or an infection, we

include in our study a parameter that represent the waning rate of immunity.
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1.1.2 Mathematical Background

In this section we describe the basic mathematical concepts related to our study

Definition 1.1.1 (Invariant set) A set Ω is said to be invariant if any solution

with initial condition in the set remains in the set for all time t ≥ 0

Definition 1.1.2 (Spectral radius) The spectral radius of a matrix T is the

largest of the absolute values of the eigenvalues of T

Definition 1.1.3 A matrix T is said to be a non-singular M-matrix if it has a

Z-sign pattern and it is invertible. Here the Z-sign pattern means the off diagonal

elements are non-positive

Definition 1.1.4 The basic reproduction number, usually denoted by Ro, is the

average number of secondary cases produced by one infected individual introduced

into a population of susceptible individuals without any interventions in place. If

interventions like vaccination are put in place then we determine effective repro-

duction number analogous to Ro, which we denote as Re

To determine reproduction number we use the Next Generation Matrix method

which is described below

1.1.3 The Next Generation Matrix Method

This is a method used in determination of Ro and it is based on dividing the

compartments under study into two;

(i) Disease compartment- This is the compartment in which individuals are

infected

(ii) Non-disease compartment- Individuals here are disease free.

Following (Brauer et al., 2012) we assume that there are n disease compartments

and m non-disease compartments. We also assume that there are x and y subpop-

ulations in each of the compartments n and m respectively. That is, x ∈ Rn and
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y ∈ Rm. We then denote the rate at which new infections increase the ith infected

compartment by Fi while Vi denote the rate of decrease in the ith compartment by

disease progression, death and recovery. The general compartmental model thus

take the form;

xi = Fi(x, y)− Vi(x, y), i = 1, 2, ..., n

yj = gj(x, y), j = 1, 2, ...,m

(1.1)

Next we put some conditions on Fi and Vi;

Fi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0 and i = 1, 2, ..., n. Since F represent new infections

it is non-negative

Vi(x, y) ≤ 0 provided xi = 0 for i = 1, 2, ..., n. Vi is the net outflow from compart-

ment i hence it must be negative whenever the compartment is empty
n∑
i=1

Vi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0. This represent the total outflow from all in-

fected compartments. For determination of the basic reproduction number using

this method we only consider the infected compartments. Moreover, determining

Ro involves the linearization of the ODEs in the infected compartments about the

disease free equilibrium(DFE). The disease free equilibrium for the above general

model will be (0, yo). After linearization about the DFE, we obtain two matrices

F and V given by

F =
∂Fi(0, yo)

∂xi
, V =

∂Vi(0, yo)

∂xi

The matrix given by FV −1 is known as the next generation matrix. The spectral

radius of this matrix is what we refer as the basic reproduction number.
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1.2 Statement of the problem

Many mathematical models have described the transmission dynamics of COVID-

19. However, most of the models do not incorporate the possibility of reinfection

despite evidence that COVID-19 reinfection is possible. In this study we bring

in the reinfection mechanism in the model. While some models include vaccina-

tion, they never consider the waning rate of immunity post-vaccination and after

infection. We therefore in this study look at how the waning rate of immunity

can change the dynamics of the disease. In addition most existing model have

not taken into account the booster vaccination program. This study examines the

impact of booster vaccination on the disease dynamics.

1.3 Objectives

1.3.1 Main Objective

The main objective of the study is to develop a mathematical COVID-19 model

with vaccination and reinfection.

1.3.2 Specific Objectives

(i) To investigate how the waning rate of immunity affects the dynamics of

COVID-19

(ii) To determine how administration of booster vaccine will impact the dynamic

spread of the disease

1.4 Methods used in the Study

The following methods are used in this study

(i) Deterministic compartmental model of ordinary differential equations.

(ii) Next Generation Matrix method in finding the basic reproduction number
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(iii) Stability analysis of equilibrium points

(iv) Numerical simulation using MATLAB software

1.5 Justification of the study

The study provides a mathematical model that investigates the immunity after

vaccination against COVID-19. The model was used to simulate the spread of the

virus and the effectiveness of vaccination in controlling it. From the analysis the

threshold level of individuals to be vaccinated in order to contain the disease is

determined. In addition , as much as effectiveness of vaccines is concerned, resur-

gence of some infections such as measles is a major concern to public health and

COVID-19 is no exception. One of the reasons for such resurgence is incomplete

protection from imperfect vaccines as well as the reduction of vaccine-induced

immunity. To address such scenario, there is need for a booster vaccination pro-

gram. The model therefore helps public health to determine the threshold to be

vaccinated when the booster vaccination is incorporated. Moreover, the hybrid

immunity, which is acquired from both COVID-19 infection and vaccination as in

(Hall et al., 2022) is very strong lasting for almost more than a year after infection.

Individuals are therefore asked to be vaccinated whether they had been infected

or not. More so those who had a prior infection are urged to be vaccinated as they

will acquire hybrid-induced immunity.
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CHAPTER TWO

LITERATURE REVIEW

This chapter deals with the following; section 2.1 captures a brief introduction

about COVID-19, section 2.2 introduces the the basic model on any infectious

disease, while section 2.3 ends the chapter by reviewing some of the models that

have been developed by researchers on the spread of COVID-19 as well as capturing

the gaps in each model with respect to our study.

2.1 Introduction

The potential benefits of non-pharmaceutical measures in containing the spread

of COVID-19 has been in spotlight . These measures have shown to be effective

in containing the spread of other viruses, such as SARS-CoV (Chen et al., 2005).

In addition, vaccination is the common method of reducing individuals who are

susceptible to a certain disease, there by reducing the basic reproduction number.

This has been successful in eradicating small pox (Murray, 2002). Since the start of

COVID-19 there have been many mathematical models to provide understanding

on the spread of the disease and suggest to the public health on what should

be done in order to reduce the spread of the disease. Mathematical modeling in

epidemiology provides understanding of the underlying mechanisms that influence

the spread of diseases, and in the process it suggests control strategies (Murray,

2002).

2.2 The Basic Model on Infectious Diseases

In most infectious disease, the population under study is divided into three com-

partments; S(t), this represents individuals who are susceptible to the disease

under study, I(t), which represent infected individuals and R(t) representing the
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recovered individuals. From the three compartments we have the famous SIR

model by Kermack-Mckendrick (Brauer et al., 2012) who were among the first

to come up with mathematical models to describe the transmission of infectious

diseases as given in equation (2.1)

Ṡ = −βSI,

İ = βSI − γI, (2.1)

Ṙ = γI

Where β and γ are the transmission rate of infection and recovery rate respectively.

Since for COVID-19 there is a latent period before individuals become infectious,

there is need to incorporate the exposed class,E, in the SIR model above. We thus

review mathematical COVID-19 models incorporating the exposed class.

2.3 Review of Mathematical models on COVID-19

A lot of models have been used to describe the dynamics of COVID-19. We

start by looking at the model considered in (Moussaoui & Auger, 2020). They

incorporated the exposed class and came up with two scenarios ; the first scenario

was a model with no control measures put into place while in the second one, at

a certain date T, drastic control measures were taken. In the first scenario they

considered an SEIR model in which S(t) denote the fraction of individuals who

are susceptible to the disease but not yet infected, E(t) denote the fraction of

exposed or latent individuals, that is, who are infected but not yet infectious , I(t)

denote the fraction of infected individuals assumed infectious and able to spread

the disease by contact with susceptible, R(t) denotes the fraction of cumulative

number of known cases (infectious but confined at home, hospitals,recover or die

from the disease). The system of differential equations used to describe the model
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were;

dS

dt
= −βSI,

dE

dt
= βSI − kE,

dI

dt
= kE − αI,

dR

dt
= αI

(2.2)

with S + E + I +R = 1

Where β is the transmission rate per infectious individual, k is the infection rate, 1
α

is the average time in compartment I before isolation. Using the next generation

matrix they computed the basic reproduction number to be Ro =
β
α

They modified the model above in the second scenario by dividing the compart-

ments S, E, I into two states each,the first state corresponding to total protection

in which an individual can not be infected while in the second state an individual

is unprotected. The main output of the model was the function v of its time

that an average individual spends in fully protected state 1 and the compliment

u=1-v in state 2 without any protection. Since S, E and I are divided into two

sub-populations each they let S = S1 + S2, E = E1 +E2, I = I1 + I2. Individuals

in S1,E1 and I1 can change states daily at a rate m2 by returning to a risk-free

activity while the rate of returning to a risky activity is m1. The model now
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becomes

dS1

dτ
= m2S2 −m1S1,

dS2

dτ
= m1S1 −m2S2 − ϵ(βS2I2),

dE1

dτ
= m2E2 −m1E1 − ϵ(kE1),

dE2

dτ
= m1E1 −m2E2 + ϵ(βS2I2 − kE2),

dI1
dτ

= m2I2 −m1I1 + ϵ(kE1 − αI1),

dI2
dτ

= m1I1 −m2I2 + ϵ(kE2 − αI2),

dR

dτ
= ϵ(αI1 + αI2)

(2.3)

where τ is the fast time, t = ϵτ is the slow time and ϵ << 1 is small dimensionless

parameter. They used aggregation of variables method to obtain a reduced model

thus

dS

dt
= −β1SI,

dE

dt
= β1SI − kE,

dI

dt
= kE − αI,

dR

dt
= αI

(2.4)

where β1 = u2β. The model was used to determine a threshold for the release

of confinement making it possible to avoid a second epidemic peak.The threshold

was found to be u∗ = 1√
RoS(T ∗)

where T* is a time of release of confinement of the

third phase. The model in Moussaoui and Auger (2020) never included reinfection

which is something to note about the transmission of COVID-19.

In Wangari et al. (2021) they included re-infection and they let S be susceptible

individuals, E exposed individuals, Ia infectious asymptomatic individuals, Im in-

fectious symptomatic with mild symptoms, Is infectious symptomatic with severe
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symptoms, Id infectious asymptomatic isolated from general population via con-

tact tracing, H hospitalized individuals, RIrecovered individuals with protective

COVID-19 immunity and RL recovered individuals with weak or no COVID-19

protective immunity. The model thus becomes

dS

dt
= −λS,

dE

dt
= λS + θλRL − σE,

dIa
dt

= fσE − (α + ϵ+ da + γ1)Ia,

dIm
dt

= (1− f)σE + ϵIa − (ν + η1 + dm + γ2)Im,

dIs
dt

= νIm − (ds + η2)Is,

dH

dt
= η1Im + η2Is − (γ3 + dh)H,

dId
dt

= αIa − (dc + γ4)Id,

dRI

dt
= γ1Ia + γ2Im + γ3H + γ4Id − ρRI

dRL

dt
= ρRI − θλRL

(2.5)

Where λ is the force of infection, 1
σ
is the intrinsic incubation period for individu-

als exposed to COVID-19, f is the proportion of exposed individuals who progress

to infectious asymptomatic class, α is the rate at which asymptomatic individ-

uals are detected via contact tracing and then isolated, ϵ is the rate at which

asymptomatic individuals develop COVID-19 mild symptoms γi i=1,2,3,4 is the

recovery rates of Ia, Im, H and Id respectively, η1 is the rate at which individu-

als with mild symptoms are hospitalized, η2 is the rate at which individuals with

severe COVID-19 are hospitalized, ν is the rate at which infectious humans with

mild symptoms develop severe symptoms, 1
ρ
is the duration of COVID-19 pro-

tective immunity da, dm, ds, dd and dh respectively represent COVID-19 induced

mortality rate in compartments Ia, Im, Is, Id and H and θ is the reduction rate

of infectiousness. Sensitivity and uncertainty analysis was conducted on the ba-

sic reproduction number and findings suggest that non-pharmaceutical measures
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are effective in curbing the spread of COVID-19 as supported by a high negative

PRCC values. With just wearing face masks and maintaining social distance,

COVID-19 peak infections was significantly delayed. Further their findings sug-

gest that increase of reinfection with COVID-19 can lead to a surge of cumulative

cases. In particular there will be a large pool of asymptotic individuals which lead

to prolonged COVID-19 outbreak. The model in (Wangari et al., 2021) although

included reinfection but never considered vaccination of individuals.

In Faria (2021) they first considered an SEIR model with no vaccine and then

incorporated a vaccine compartment. The vaccine considered was imperfect mean-

ing individuals who are vaccinated can still contract the virus but at a reduced

rate. The system of differential equations to describe the model was as follows

dS

dt
= Λ− ηS − β1SE − β2SI − µS,

dV

dt
= ηS − (1− ϵv)β1V E − (1− ϵv)β2V I − µV,

dE

dt
= β1SE + β2SI + (1− ϵv)β1V E + (1− ϵv)β2V I − γE − σE − µE,

dI

dt
= γE − κI − δI − µI,

dR

dt
= σE + κI − µR

(2.6)

Where Λ is the recruitment rate, β1 is the rate of contraction of susceptible from

exposed, β2 is the rate of contraction of susceptible from infectious, γ is the rate

at which exposed individual becomes infectious, σ the rate at which an exposed

individual recovers, κ the rate at which an infectious individual recovers, δ is the

disease induced death rate, µ is natural death rate, ϵv is the efficacy of the vaccine

and η is the vaccination rate.

The analysis was done and the disease free equilibrium(DFE) for the model

without the vaccination compartment compared with the model with vaccinated

compartment suggest that the susceptible individuals are reduced when a vaccine

compartment is incorporated. That is, the DFE with no vaccine compartment
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was So = Λ
µ
while with the vaccine compartment was Sov = Λ

η+µ
. It is clear that

Sov < So

The basic reproduction number for both models was also determined and it

was found that the one for the model with the vaccine compartment was smaller

than the model with no vaccine. They included vaccination of individuals but

never the waning of immunity after vaccination.

All the models that we have come across for COVID-19, most of them do not

include administration of booster vaccine. Moreover, most of the mathematical

models that have been studied do not include reinfection mechanism and waning

of immunity after both vaccination and prior infection. In this study we consider

a model with reinfection and vaccine compartments in which after vaccination,

individuals start loosing immunity over time. We also introduce the rate of ad-

ministration of booster vaccine to previously vaccinated individuals.
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CHAPTER THREE

FORMULATION OF THE MODEL

In this chapter, section 3.1 focuses on stating the assumptions behind the model as

well as describing the parameters of the model. We end the chapter by formulating

the model.

3.1 Assumptions

The population under study is divided into the following compartments S(t) which

denote individuals who are susceptible to COVID-19 but not yet infected at time

t, E(t) are exposed individuals who are infected but not yet infectious at time t,

I(t) are infective individuals, R(t) are vaccinated and recovered individuals, and

V(t) are vaccinated individuals. For notational convenience we define the following

variables;

S(t) = S, E(t) = E, V (t) = V , I(t) = I and R(t) = R

We make the following assumptions for the model

(i) Individuals in each compartment are uniformly mixed.

(ii) Immunity induced by vaccination wanes and vaccines are imperfect, thus we

introduce booster vaccination.

(iii) Infectivity rate of exposed individuals is less compared to infectivity of in-

fected individuals.

(iv) Individuals in compartment V can be infected if they make contact with

individuals in compartments E and I as the vaccines are imperfect.

(v) There is death due to COVID-19 in compartment I.
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(v) Individuals in compartment R who were administered a booster vaccine are

considered to have protective immunity at a longer period of time .

(vi) The total population size in consideration is a constant N.

The following parameters are used in the model

(i) β is the transmission rate of the disease, it describes the number of new

cases that arise from each existing case.

(ii) λE is the infection rate of exposed individuals

(iii) η is the rate at which individuals are vaccinated while ρ is the efficacy of the

vaccine

(iv) γ is the rate at which exposed members become infectious

(v) rE and rI are the rates at which exposed and infective members recover

respectively, d is COVID-19 mortality rate, µ is the natural death rate in

each compartment, b is rate of administering booster vaccine and ω is the

rate at which individuals in R become susceptible to the disease again.
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3.2 The Model

The schematic diagram for the model is as shown below. The arrows indicate

individuals progressing from one compartment to another

Figure 3.1: Schematic diagram showing the progression from one state to another

From the schematic diagram above, we first describe the evolution in each

compartment then write down a system of differential equations which describes

the model.

In S the gain is due to recruitment rate ϕ as well as from individuals who are re-

infected and due to waning immunity from vaccinated individuals, hence they will

contribute positively to the rate of change in S. The loss is due to individuals be-

ing exposed, vaccinated and also due to natural death. In the schematic diagram

we are assuming that individuals are first exposed before being infectious. The

evolution in V is described by adding individuals into the compartment through

vaccination while individuals leave the compartment through exposure to the dis-

ease, being administered booster vaccine and also natural death. In E, the gain

is from the loss from both S and V to exposed while the loss is due to individuals

becoming infectious, recovery and natural death. In I, the exposed individuals
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who become infectious add to the compartment while the loss is due to recovery,

death induced by COVID-19 and natural death. In R, the gain is as a result

of individuals who recover, that is from compartments E and I and also due to

individuals being administered a booster vaccine. The loss is due to individuals

being reinfected and natural death. In each compartment the gain and loss will

be represented by a positive sign and a negative sign respectively. Using this

information and also with the above assumptions and parameters, the system of

differential equations describing the model becomes

dS

dt
= ϕ− βS(λEE + I)− (η + µ)S + εV + ωR,

dV

dt
= ηS − (1− ρ)βV [λEE + I]− (b+ µ+ ε)V,

dE

dt
= βS(λEE + I) + (1− ρ)βV [λEE + I)]− (γ + rE + µ)E,

dI

dt
= γE − (rI + d+ µ)I,

dR

dt
= rEE + rII − (ω + µ)R + bV

(3.1)

Equation (3.1) is subject to the initial condition S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0,

I(0) ≥ 0, and R(0) ≥ 0. We have formulated our model and hence the system of

differential equations describing it. We now analyze the system, first starting with

its basic properties, positivity and boundedness of solutions, which we describe in

the next chapter
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CHAPTER FOUR

ANALYSIS OF THE MODEL

This chapter focuses on the analysis of our model. Section 4.1 deals with the

positivity and boundedness of the solutions. Section 4.2 describes the basic re-

production number as well as sensitivity analysis of it. In addition we determine

the threshold value of individuals needed to be vaccinated in order to contain the

disease. Section 4.3 deals with determination of equilibrium points and their sta-

bility to understand the long term behaviour of the solutions. We end the chapter

by performing numerical simulation.

4.1 Positivity and Boundedness of Solutions

Since we are dealing with human population, the solutions set {S(t),V(t),E(t),I(t),R(t)}

must be positive and bounded. We therefore state and prove the following theo-

rems with respect to our model.

Theorem 4.1.1 The solutions set {S(t),V(t),E(t),I(t),R(t)} for system (3.1) is

positive with the initial conditions {S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,

R(0) ≥ 0} for all t > 0 and all nonnegative parameters.

Proof

For dS
dt

we have

dS

dt
= ϕ− βS(λEE + I)− (η + µ)S + εV + ωR

= ϕ+ εV + ωR− βS(λEE + I)− (η + µ)S

≥ −S(βλEE + βI + η + µ)
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Letting ψ(t) = βλEE + βI + η + µ we have

dS

dt
≥ −Sψ(t)

Just like a separable differential equation, the inequality is separable. We thus

use separation of variables technique to solve the inequality. That is,

∫
dS

S
≥

∫
−ψ(t)dt

We integrate from 0 to t to obtain

[lnS]to ≥ −
∫ t

0

ψ(τ)dτ

=⇒

S(t) ≥ S(0)exp

(
−
∫ t

0

ψ(τ)dτ

)

Since S(0) ≥ 0 and an exponential function is always positive we have that S(t) ≥

0

In a similar manner, we can prove that V(t),E(t),I(t) and R(t) are all nonnegative.

Theorem 4.1.2 The solution set of system (3.1) is bounded within the invariant

region Ω ∈ R5
+. Where Ω =

{
(S, V, E, I, R) : N ≤ ϕ

µ

}
Proof

Adding the differential equations in system (3.1), we have

N ′ = S ′ + V ′ + E ′ + I ′ +R′
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Where ′; = d
dt
. From system (3.1) we have

N ′ = ϕ− µS − µV − µE − (d+ µ)I − µR

= ϕ− µ(S + V + E + I +R)− dI

= ϕ− µN − dI

If there is an infection in the population I(t) > 0. And since I ≤ N =⇒ dI ≤ dN .

Thus,

N ′ ≥ ϕ− µN − dN = ϕ− (µ+ d)N

N ′ ≥ ϕ− (µ+ d)N (4.1)

If there is no infection, then I(t)=0. Thus,

N ′ ≤ ϕ− µN (4.2)

From (4.1) and (4.2) we obtain

ϕ− (µ+ d)N ≤ N ′ ≤ ϕ− µN

By the variation of constant formulae and taking the limits of integration from 0

to t we have

e−(µ+d)t

[
N(0) +

∫ t

0

ϕe(µ+d)τdτ

]
≤ N ≤ e−µt

[
N(0) +

∫ t

0

ϕeµτdτ

]
(4.3)

Upon integration we obtain

e−(µ+d)t

[
N(0) +

ϕ

µ+ d

(
e(µ+d)t − 1

)]
≤ N ≤ e−µt

[
N(0) +

ϕ

µ

(
eµt − 1

)]
(4.4)
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After simplifying we have

ϕ

µ+ d
+ e−(µ+d)t

(
N(0)− ϕ

µ+ d

)
≤ N ≤ ϕ

µ
+ e−µt

(
N(0)− ϕ

µ

)
(4.5)

As t approaches ∞ we have

ϕ

µ+ d
≤ N ≤ ϕ

µ
(4.6)

Therefore from (4.6) we conclude that the solution sets for system (3.1) are

bounded within the invariant region Ω. Thus from positivity and boundedness

of solutions we can clearly conclude that the model is valid since population is

always positive and the population in each compartment should not exceed the

total population N

4.2 The Basic Reproduction Number

Both Ro and Re help us know how many individuals one infected person can infect

which in turn help us know if an epidemic will occur or not. For instance if R0 > 1

or Re > 1 there will be an epidemic, that is, there will be a widespread occurrence

of the disease in the population for some period. However if Ro < 1 or Re < 1

then the disease will die out. To compute the basic reproduction number, we use

the next generation matrix method which we discussed in section 1.1. With that

knowledge on the next generation matrix, we compute the effective reproduction

number but first starting with determination of the disease free equilibrium(DFE)

since we will need it for determination of F and V as we saw in section 1.1. The

DFE is determined by equating each of the equations in (3.1) to 0 and taking

E,I,R to be equal to 0 since there is no disease in the population. After these

simple steps we only remain with two equations thus

ϕ− (η + µ)So + εVo = 0

ηSo − (b+ µ+ ε)Vo = 0

(4.7)
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Solving system (4.7) for So and Vo we obtain

So =
ϕ(b+ µ+ ε)

(b+ µ)(η + µ) + µε

Vo =
ϕη

(b+ µ)(η + µ) + µε

With So and Vo as given above the DFE becomes (So, Vo, 0, 0, 0). For our model

in (3.1) the disease compartments are E and I. Therefore we will only focus on the

differential equations;

dE

dt
= βS(λEE + I) + (1− ρ(t))βV [λEE + I)]− (γ + rE + µ)E,

dI

dt
= γE − (rI + d+ µ)I

(4.8)

From (4.8) we form Fi and Vi which will help us determine F and V. Since we only

have two disease compartments, i = 1, 2. Therefore we have for Fi

F1 = βS(λEE + I) + (1− ρ)βV [λEE + I)],

F2 = 0

(4.9)

F2 = 0 in equation (4.9) is due to the fact that there are no new infections in

compartment I . For Vi we have

V1 = (γ + rE + µ)E

V2 = (rI + µ+ d)I − γE

(4.10)

Letting γ + rE + µ = c1, rI + µ+ d = c2 and linearizing systems (4.9) and (4.10)

about the DFE (So, Vo, 0, 0, 0) we obtain matrices F and V. That is;

F=

βλE[So + (1− ρ)Vo] β[So + (1− ρ)Vo]

0 0


V=

 c1 0

−γ c2


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To determine the basic reproduction number we have to find FV −1. First, we

determine V −1. We first determine if determinant of V, |V |, exists and |V | ≠ 0

so that V −1 exists. We easily compute |V | as follows

|V |=

∣∣∣∣∣∣∣
c1 0

−γ c2

∣∣∣∣∣∣∣ = c1c2 ̸= 0. Thus V −1 exists and it is given by

V −1 =
1

c1c2

c2 0

γ c1


With F and V −1 we compute the next generation matrix FV −1. That is;

FV −1 =
1

c1c2

βλE[So + (1− ρ)Vo] β[So + (1− ρ)Vo]

0 0


c2 0

γ c1


=

1

c1c2

c2βλE[So(1− ρ)Vo] + γβ[So + (1− ρ)Vo] c1β[So + (1− ρ)Vo]

0 0


The effective reproduction number, Re, is the dominant eigenvalue of the matrix

FV −1. Thus we have

Re =
1

c1c2
{c2βλE[So(1− ρ)Vo] + γβ[So + (1− ρ)Vo]}

=
1

c1
βλESo +

γ

c1

1

c2
βSo +

1

c1
βλE(1− ρ)Vo +

γ

c1

1

c2
β(1− ρ)Vo (4.11)

We can clearly see that the effective reproduction number is as a result of suscep-

tible individuals who are not vaccinated and vaccinated individuals. Thus we can

express it as

Re = RSo
o +RVo

o (4.12)
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Where

RSo
o =

1

c1
βλESo +

γ

c1

1

c2
βSo and

RVo
o =

1

c1
βλE(1− ρ)Vo +

γ

c1

1

c2
β(1− ρ)Vo

After substituting c1 and c2 as we had let earlier we get

RSo
o =

1

γ + rE + µ
βλESo +

γ

γ + rE + µ

1

rI + µ+ d
βSo (4.13)

RVo
o =

1

γ + rE + µ
βλE(1− ρ)Vo +

γ

γ + rE + µ

1

rI + µ+ d
β(1− ρ)Vo(4.14)

With no interventions, from the effective reproduction number we obtain the basic

reproduction number as

Ro =
1

γ + rE + µ
βλESo +

γ

γ + rE + µ

1

rI + µ+ d
βSo (4.15)

Where So =
ϕ
µ
= 1. What this means is that before the disease invasion, the total

population is equal to the susceptible population. Next we express the effective

reproduction number in terms of Ro for ease of determination of the minimum

critical value to be vaccinated to contain the disease. Note that from now in our

analysis we are going to assume that the rates of recovery of exposed individuals

and infected individuals are equal, thus we take rE = rI = r. In addition we take

1− ρ = ψ. After substituting So =
ϕ
µ
= 1 in the equation for Ro we obtain

Ro =
βλE

(γ + r + µ)
+

γβ

(γ + r + µ)(r + µ+ d)
(4.16)

We now express Re in terms of Ro starting withRSo
o

RSo
o =

βλEϕ(b+ µ+ ε)

(γ + r + µ) [(b+ µ)(η + µ) + µε]
+

γβϕ(b+ µ+ ε)

(γ + r + µ)(r + µ+ d) [(b+ µ)(η + µ) + µε]
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Simplifying we obtain

RSo
o =

(b+ µ+ ε)ϕ

(b+ µ)(η + µ) + µε

[
βλE

(γ + r + µ)
+

γβ

(γ + r + µ)(r + µ+ d)

]

Which after using Ro simplifies to

RSo
o =

(b+ µ+ ε)ϕ

(b+ µ)(η + µ) + µε
(Ro)

In a similar manner we obtain RVo
o as

RVo
o =

ϕψη

(b+ µ)(η + µ) + µε
(Ro)

. Thus

Re =
ϕRo

(b+ µ)(η + µ) + µε
[b+ µ+ ε+ ηψ]

= (So + ψVo)Ro (4.17)

For the minimum value to contain the disease as seen in (Keeling & Rohani, 2011),

Re = 1. Therefore

ϕRo

(b+ µ)(η + µ) + µε
[b+ µ+ ε+ ηψ] = 1

=⇒

ϕRo(b+ µ+ ε+ ηψ) = (b+ µ)(η + µ) + µε (4.18)

Our aim is determining the critical value ηc which is easily archived by making η

the subject in equation (4.18). After some simple algebra we obtain

ηc =
ϕ(b+ µ+ ε)(Ro − 1)

b+ µ− ϕψRo

(4.19)
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This is the minimum critical value that need to be vaccinated in order to contain

the disease. If there is no booster vaccination we have

ηc1 =
(µ+ ε)(Ro − 1)

1− ψRo

(4.20)

For a perfect vaccine and there is no booster vaccination, that is, for 1−ρ = ψ = 0

and b=0 we have

ηc2 = (µ+ ε)(Ro − 1) (4.21)

For a perfect vaccine we expect the critical value to be vaccinated to be less

compared to when the vaccine is imperfect. Thus, it should be clear that the

expression for ηc in equation (4.20) should be greater than the expression for ηc

in equation (4.21). In deed this is true. Let’s prove this by contradiction. Let’s

assume that

(µ+ ε)(Ro − 1) >
(µ+ ε)(Ro − 1)

1− ψRo

=⇒

1 >
1

1− ψRo

=⇒

1− ψRo > 1

=⇒

ψR0 < 0

We know that ψ and Ro are nonnegative thus ψR0 < 0 is false, hence our assump-

tion is false. Therefore

(µ+ ε)(Ro − 1) <
(µ+ ε)(Ro − 1)

1− ψRo
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If there is no waning of immunity, there is no need of booster vaccination thus

from equation (4.19) we obtain

ηc3 =
ϕ(Ro − 1)

1− ψRo

(4.22)

It is also clear that ηc1 > ηc3 . Having determined the effective reproduction

number we carry out sensitivity and elasticity analysis to know how parameters

affect the effective reproduction number.

4.2.1 Sensitivity and Elasticity Analysis of Re

Sensitivity is used to predict which parameters have a great impact on Re (Van den

Driessche, 2017). We define the sensitivity index of Re with respect to a parameter

β as ∂Re

∂β
. Elasticity index measures the relative change of Re with respect to a

parameter (Van den Driessche, 2017). The elasticity index of a parameter β is

defined as Y Re
β = ∂Re

∂β
× β

Re
. If the elasticity index is positive then Re increases

with increase in the parameter while if it is negative Re decreases with increase

in the parameter. The magnitude of the elasticity index determines the relative

importance of the parameter. With this knowledge on sensitivity and elasticity

we determine elasticity indices for both of our parameters in the model equation

(3.1). Remember Re is given in equation (4.12)

Starting with β we have

Y Re
β =

∂Re

∂β
× β

Re

=

[
λESo

γ + r + µ
+

γSo
(γ + r + µ)(r + µ+ d)

+
λEψVo
γ + r + µ

+
γψVo

(γ + r + µ)(r + µ+ d)

]
β

Re

Simplifying by opening the brackets with β we obtain Y Re
β = Re

Re
= 1. Analogous

to determining Y Re
β above, we find the sensitivity index for each of the other
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parameters thus

Y Re
λE

=
λEβ

Re(γ + r + µ)
[So + ψVo]

Y Re
d =

−d
Re(r + µ+ d)3

[So + ψVo]

Y Re
r =

−r
Re(γ + r + µ)

[
Re +

γβ

(r + µ+ d)2
(So + ψVo)

]
Y Re
µ =

−µ
Re(γ + r + µ)

[
Re +

γβ

(r + µ+ d)2
(So + ψVo)

]
Y Re
γ =

1

Re(γ + r + µ)

[
−γRe +

γβSo
r + µ+ d

+
γβψVo
r + µ+ d

]
Y Re
ψ =

ψVoRo

Re

Y Re
η =

Roη

((b+ µ)(η + µ) + µε)Re

(
µψVo(b+ µ+ ε)

η
− So(b+ µ)

)
Y Re
b =

−Rob

((b+ µ)(η + µ) + µε)Re

(
ηεSo

b+ µ+ ε
+ ψVo(η + µ)

)
Y Re
ε =

Roε

((b+ µ)(η + µ) + µε)Re

(
ηSo(b+ µ)

b+ µ+ ε
− µψVo

)
Y Re
ϕ = 1

Clearly without the exact values of the parameters, we can say that Re increases

with increase in β, ϕ λE and ψ since their elasticity indices are all positive. It

is also clear that Re decreases with increase in d, r µ and b since their elasticity

indices are negative. For other parameters we will know how exactly they affect

Re after carrying out numerical simulations. We have computed the basic and

effective reproduction numbers and used them in different analysis but we haven’t

described the long term behaviour of our dynamical system in equation (3.1). To

achieve this we carry out stability analysis of the system.

4.3 Stability Analysis

To carry out stability analysis of the system we must have the equilibrium points,

that is where the system isn’t changing with respect to time. There are two types

of equilibrium points; the disease free equilibrium (DFE) where there is no dis-
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ease in the population and the endemic equilibrium where the disease persist in

the population. After determining the equilibrium points, we linearize the system

under study to obtain the Jacobian matrix of the system at the equilibrium points

, from which we find the eigenvalues to help us determine if the equilibrium point

is stable or unstable. If the real part of the eigenvalues of the matrix are all neg-

ative then the equilibrium point is said to be stable. If at least one eigenvalue is

positive then the equilibrium point is unstable. In case at least one eigenvalue is

zero then we can’t use linearization to determine the stability of the steady state.

For stability we determine local stability and global stability. Local stability of

an equilibrium point considers points close to that equilibrium point while global

stability considers all points not only those with initial values close to the equilib-

rium point. As seen earlier we already computed the DFE and so we proceed in

determining it’s stability first starting with local stability.
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4.3.1 Local Stability of the DFE

For the DFE we determine its stability using the theorem below

Theorem 4.3.1 The DFE is locally asymptotically stable if Re < 1 but unstable

if Re > 1

We prove this theorem with respect to our system Proof

Recall that the DFE is given by

(So, Vo, Eo, Io, Ro) =

(
ϕ(b+ µ+ ε)

(b+ µ)(η + µ) + µ
,

ϕη

(b+ µ)(η + µ) + µε
, 0, 0, 0

)

We will denote it by ϵo = (So, Vo, Eo, Io, Ro). To determine the stability of the

DFE we find the Jacobian matrix of system (3.1) evaluated at the DFE. Let’s

denote this Jacobian matrix by A. Defining the equations in (3.1) by f1,f2,f3,f4

and f5 respectively, A is given by

A =



(f1)S (f1)V (f1)E (f1)I (f1)R

(f2)S (f2)V (f2)E (f2)I (f2)R

(f3)S (f3)V (f3)E (f3)I (f3)R

(f4)S (f4)V (f4)E (f4)I (f4)R

(f5)S (f5)V (f5)E (f5)I (f5)R


Where subscripts denote partial derivatives with respect to S,V,E,I and R. Thus

A =



−β(λEE + I)− k1 ε −βλES −βS ω

η −ψβ(λEE + I)− c −ψβλEV −ψβV 0

β(λEE + I) ψβ(λEE + I) βλE(S + ψV )− k β(S + ψV ) 0

0 0 γ −(r + d+ µ) 0

0 b r r −(ω + µ)


Where we have let c = (b+ µ+ ε), k = (γ + r + µ), k1 = η + µ

Evaluating A at the DFE and letting k2 = βλESo, k3 = βSo, k4 = b + µ + ε,

k5 = ψβλEVo, k6 = ψβVo, k7 = βλE(S + ψV ) − (γ + r + µ), k8 = β(So + ψVo),
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k9 = r + d+ µ, k10 = ω + µ we obtain;

A(ϵo) =



−k1 ε −k2 −k3 ω

η −k4 −k5 −k6 0

0 0 k7 k8 0

0 0 γ −k9 0

0 b r r −k10


We determine the stability of ϵo by finding the eigenvalues of the matrix A(ϵo).

That is, we solve

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ k1 ε −k2 −k3 ω

η λ+ k4 −k5 −k6 0

0 0 λ− k7 k8 0

0 0 γ λ+ k9 0

0 b r r λ+ k10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(λ+ k1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ k4 −k5 −k6 0

0 λ− k7 k8 0

0 γ λ+ k9 0

b r r λ+ k10

∣∣∣∣∣∣∣∣∣∣∣∣∣
− η

∣∣∣∣∣∣∣∣∣∣∣∣∣

ε −k2 −k3 ω

0 λ− k7 k8 0

0 γ λ+ k9 0

b r r λ+ k10

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(λ+k1)(λ+k10)

∣∣∣∣∣∣∣∣∣∣
λ+ k4 −k5 −k6

0 λ− k7 k8

0 γ λ+ k9

∣∣∣∣∣∣∣∣∣∣
−η(ε(λ+k10)− bω)

∣∣∣∣∣∣∣
λ− k7 k8

γ λ+ k9

∣∣∣∣∣∣∣ = 0

(λ+k1)(λ+k10)(λ+k4)

∣∣∣∣∣∣∣
λ− k7 k8

γ λ+ k9

∣∣∣∣∣∣∣− η(ε(λ+k10)− bω)

∣∣∣∣∣∣∣
λ− k7 k8

γ λ+ k9

∣∣∣∣∣∣∣ = 0

λ− k7)(λ+ k9)− γk8 [(λ+ k1)(λ+ k10)(λ+ k4)− η(ε(λ+ k10)− bω)] = 0
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=⇒

(λ− k7)(λ+ k9)− γk8 = 0 (4.23)

(λ+ k1)(λ+ k10)(λ+ k4)− η(ε(λ+ k10)− bω) = 0 (4.24)

From equations (4.23) and (4.24) we respectively obtain

λ2 + (k9 − k7)λ− (k7k9 + k8γ) = 0

λ3 + (k1 + k4 + k10)λ
2 + (k1k4 + k1k10 + k4k10 − ηε)λ+ k1k4k10 + ηbω − ηεk10 = 0

We check the signs of the roots of the two latter equations using the Routh-

Hurwitz stability criterion which we refer in (Bodson, 2019; Murray, 2002). Just

to summarize it: If the first column of the Routh-Hurwitz array contains non-zero

elements for a given polynomial p(x) then

(i) the number of positive roots of p(x)is equal to the number of sign changes

in the first column of the array

(ii) the roots of p(x) are all negative if all the elements in the first row have the

same sign

(iii) there can be no root of p(x) on the imaginary axis unless the first column

has a zero element

We now make use of the criterion

For

λ2 + (k9 − k7)λ− (k7k9 + k8γ) = 0 (4.25)

the coefficients in the polynomial will make the first column of the Routh-Hurrwitz

array and we can easily see that they are all non-zero. That is the first column

will take the elements 1,(k9− k7) and −(k7k9+ k8γ). All we need to check are the

signs of these elements.
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Obviously 1 > 0. We check (k9 − k7). Let’s assume (k9 − k7) < 0 =⇒ k9 < k7

Recalling k7 and k9 we have

r + d+ µ < βλE(So + ψVo)− (γ + r + µ)

Which can be written as

r + d+ µ

γ + r + µ
<

βλESo
γ + r + µ

+
βλEψVo
γ + r + µ

− 1

Which we can easily express the right hand side(RHS) in terms of Re by adding

γβSo
(γ + r + µ)(r + µ+ d)

+
γβψVo

(γ + r + µ)(r + µ+ d)

of which the inequality still holds and we obtain r+d+µ
γ+r+µ

< Re − 1. The left hand

side(LHS) is division of positive numbers which the quotient will be positive, thus

for the inequality to hold Re > 1 which implies that k9 − k7 < 0 if Re > 1. This

further implies k9−k7 > 0 if Re < 1. For −(k7k9+k8) let’s assume −(k7k9+k8) > 0

=⇒ k7k9 + k8 < 0

Which also implies k7k9 < −k8. Recalling k7, k9 and k8 we have

[βλE(S + ψV )− (γ + r + µ)] (r + d+ µ) < −β(So + ψVo)

=⇒

βλE(S + ψV )− (γ + r + µ) < − βSo
(r + d+ µ)

− ψVo
(r + d+ µ)

Dividing through by γ + r + µ and rearranging terms we obtain

Re − 1 < 0

=⇒ −(k7k9+k8) > 0 if Re < 1 and −(k7k9+k8) < 0 if Re > 1. We thus see that

for Re < 1 the elements are all positive but for Re > 1 there is change in signs.
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What this means is that for Re < 1 all the two eigenvalues will be negative while

for Re > 1 at least one of the eigenvalues will be positive. We now check for

λ3 + (k1 + k4 + k10)λ
2 + (k1k4 + k1k10 + k4k10 − ηε)λ+ k1k4k10 + ηbω − ηεk10 = 0

The Routh-Hurrwitz array of this polynomial is

λ3 1 k1k4 + k1k10 + k4k10 − ηε

λ2 k1 + k4 + k10 k1k4k10 + ηbω − ηεk10

λ1 K

λ0 k1k4k10 + ηbω − ηεk10

Where

K =
k1k4 + k1k10 + k4k10 − ηε− (k1 + k4 + k10)(ηbω − ηεk10)

k1 + k4 + k10

We see that all the elements in the first column are non-zero. All we need to do is

check the sign of each element, 1 is trivial. We go to k1 + k4 + k10 which is easily

seen as k1+k4+k10 > 0 because k1, k2 and k10 are all positive. For K let’s assume

it’s also positive that’s

k1k4 + k1k10 + k4k10 − ηε− (k1 + k4 + k10)(ηbω − ηεk10)

k1 + k4 + k10
> 0

Implying that

(k1 + k4 + k10)(k1k4 + k1k10 + k4k10 − ηε)− (ηbω − ηεk10) > 0

We observe that ηε term is contained in (k1k2) with a positive sign hence they

will cancel out. Also ηbω term is contained in (k1k4k10) with a positive sign and

they will cancel out. Thus we remain with positive constants which implies our
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assumption is correct. That is

k1k4 + k1k10 + k4k10 − ηε− (k1 + k4 + k10)(ηbω − ηεk10)

k1 + k4 + k10
> 0

=⇒ K > 0. Finally we check k1k4k10 + ηbω − ηεk10. Since ηεk10 is contained in

(k1k4k10) as positive they will cancel out thus obtaining k1k4k10+ηbω−ηεk10 > 0.

All these results imply that the first column of the Routh-Hurrwitz array contains

elements with same sign. Thus all the roots of the polynomial are negative. We

see that for Re < 1 all the eigenvalues are negative, thus the DFE is locally

asymptotically stable.However, for Re > 1 at least one eigenvalue is positive hence

the DFE is unstable to small perturbations.

4.3.2 Global Stability of DFE

We now turn our attention to global stability of the DFE. First we outline some

information that will help us determine the global stability of the DFE. Let’s

for a moment recall the Next Generation Matrix method we used in determining

the effective reproduction number. That is we assume that there are n disease

compartments and m non-disease compartments. We also assume that there are

x and y subpopulations in each of the compartments n and m respectively. That

is, x ∈ Rn and y ∈ Rm . We then denote the rate at which new infections

increase the ith infected compartment by Fi while Vi denote the rate of decrease

in the ith compartment by disease progression, death and recovery. The general

compartmental model thus take the form;

ẋi = Fi(x, y)− Vi(x, y), i = 1, 2, ..., n

ẏj = gj(x, y), j = 1, 2, ...,m

(4.26)

Next we put some conditions on Fi and Vi;

Fi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0 and i = 1, 2, ..., n. Since F represent new infections

and therefore it is nonnegative
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Vi(x, y) ≤ 0 provided xi = 0 for i = 1, 2, ..., n. Vi is the net outflow from compart-

ment i hence it must be negative whenever the compartment is empty
n∑
i=1

Vi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0. This represent the total outflow from all

infected compartments. Also recall that matrices F and V can be determined as

F =
∂Fi(0, yo)

∂xi
V =

∂Vi(0, yo)

∂xi

Following (Brauer et al., 2012) system (4.26) can be written as

ẋi = (F − V )x− f(x, y)i = 1, 2, ..., n

ẏj = gj(x, y), j = 1, 2, ...,m

(4.27)

Where f(x, y) = (F −V )x−Fi+Vi. Taking F −V = −T equation (4.27) becomes

ẋi = −Tx− f(x, y)

ẏj = gj(x, y)

(4.28)

We now state the theorem that will help us determine the global stability of the

DFE of the general system in (4.28) and thus our system.
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Theorem 4.3.2 (Castillo-Chavez, Feng and Huang) If -T is a nonsingular

M-matrix, f(x, y) ≥ 0, F ≥ 0 and if Ro < 1 then the DFE is globally asymptoti-

cally stable.

The proof of this theorem can be found in (Brauer et al., 2012). All we need to

check is if the conditions in Theorem 4.3.2 above are satisfied so that we make use

of the theorem to determine the global stability of the DFE of our system. Recall

that for our system in (3.1)

F =

βλE(So + ψVo) β(So + ψVo)

0 0


V=

 c1 0

−γ c2


Where c1 = γ + µ+ r, c2 = r + µ+ d

−T = −(F − V ) = −

βλE(So + ψVo)− c1 β(So + ψVo)

γ −c2


=⇒ −T =

c1 − βλE(So + ψVo) −β(So + ψVo)

−γ c2


Since the off-diagonal elements of -T are negative it implies -T is a nonsingular

M-matrix. It is also clear that F ≥ 0 and all that remains to be checked is if

f(x, y) ≥ 0. Recall that f(x, y) = (F − V )x − Fi + Vi. Since x represents the

disease compartments, x =

E
I

 Thus

(F − V )x =

βλE(So + ψVo)− c1 β(So + ψVo)

γ −c2


E
I


=

(
EβλE(So + ψVo)− c1E + βI(So + ψVo) γE − c2I

)
(4.29)

Also from the definitions of Fi and Vi we have

−(Fi − Vi) = −
(
βS(λEE + I) + ψβV (λEE + I)− c1E −c2I + γI

)
(4.30)
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From equations (4.29) and (4.30) we have

f(x, y) =

(
βλEE(So + ψVo) + βI(So + ψVo)− βS(λEE + I)− ψβV (λEE + I) 0

)
=

(
(βI + βλEE)(So − S) + (βψλEE + βψI)(Vo − V ) 0

)

Clearly f(x, y) ≥ 0 since So ≥ S and Vo ≥ V . Since all the conditions of Theorem

4.3.2 are satisfied, it implies that the DFE of our system is globally asymptoti-

cally stable. This implies that even if the disease is present in the population and

Re < 1 then the disease will be wiped out of the population since all the solutions

will approach the DFE.

4.3.3 Stability of the Endemic Equilibrium

The endemic equilibrium(EE) means that the disease persists in the population.

Thus it makes sense to know if the disease will stay in the population forever or it

dies out. We start by determining the EE and then it’s stability. We will assume

that after vaccination and booster vaccination program are imposed, individuals

stay for a long period of time in the recovery before being susceptible to the disease

again thus we take ω << 1 for the determination and further stability analysis of

the EE. In fact from the expression of Re, there is no dependence of Re on the

parameter ω. Therefore recalling system (3.1) and noting that R does not appear

in the first four equations, we equate each of the differential equation to 0 and

thus obtain a reduced system

0 = ϕ− βS∗(λEE
∗ + I∗)− (η + µ)S∗ + εV ∗

0 = ηS∗ − ψβV ∗(λEE
∗ + I∗)− (b+ µ+ ε)V ∗

0 = βS∗(λEE
∗ + I∗) + ψβV ∗(λEE

∗ + I∗)− (γ + r + µ)E∗

0 = γE∗ − (r + d+ µ)I∗

(4.31)
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Where (S∗, V ∗, E∗, I∗) represent the endemic equilibrium values

From the last equation in (4.31) we obtain

I∗ =

(
γ

r + d+ µ

)
E∗ = k1E

∗ (4.32)

Using (4.32) in the other three equations of (4.31) and letting k2 =
λE(r+d+µ)+γ

r+d+µ

we obtain

0 = ϕ− βk2S
∗E∗ − (η + µ)S∗ + εV ∗

0 = ηS∗ − ψβk2V
∗E∗ − (b+ µ+ ε)V ∗ (4.33)

0 = βk2S
∗E∗ + ψβk2V

∗E∗ − (γ + r + µ)E∗

The last equation of (4.33) gives

(βk2S
∗ + ψβk2V

∗ − (γ + r + µ))E∗ = 0

E∗ = 0 will give us the DFE, we thus take

βk2S
∗ + ψβk2V

∗ − (γ + r + µ) = 0

=⇒ S∗ = k3 − ψV where

k3 =
γ + r + µ

βk2
=

(γ + r + µ)(r + d+ µ)

βλE(r + d+ µ) + βγ

Adding the the last two equations of (4.33) to the first equation and using

S∗ = k3 − ψV we obtain

ϕ− (b+ µ)V ∗ − (γ + r + µ)E∗ − µ(k3 − ψV ∗) = 0 (4.34)
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From equation (4.34) we get

V ∗ =
ϕ(1− k3)

µ(1− ψ) + b
−
(

γ + r + µ

µ(1− ψ) + b

)
E∗

V ∗ = k4 − k5E
∗ (4.35)

Thus

S∗ = k3 − ψk4 + ψk5E
∗

That is

S∗ = k6 + ψk5E
∗ (4.36)

We now use equations (4.35) and (4.36) into the second equation of (4.33) to get

ψβk2k5E
∗2 + (ηψk5 + (b+ µ+ ε)k5 − ψβk2k4)E

∗ − ((b+ µ+ ε)k4 − ηk6) = 0

Which can be written as

a1E
∗2 + a2E

∗ − a3 = 0 (4.37)

Where a1 = ψβk2k5, a2 = (ηψk5+(b+µ+ε)k5−ψβk2k4) and a3 = ((b+ µ+ ε)k4 − ηk6)

We note that a1 = ψβk2k5 > 0 since k2 =
λE(r+d+µ)+γ

r+d+µ
> 0 and

k5 =
(

γ+r+µ
µ(1−ψ)+b

)
> 0.

Also using Ro = βλE
(γ+r+µ)

+ γβ
(γ+r+µ)(r+µ+d)

we have k3 = (γ+r+µ)(r+d+µ)
βλE(r+d+µ)+βγ

= 1
Ro
. We

thus obtain

((b+ µ+ ε)k4 − ηk6) =
1

Ro

[
ϕ(ηψ + b+ µ+ ε)

µ(1− ψ) + b
(Ro − 1)− η

]
> 0

if Ro > 1. Thus a3 > 0 if Ro > 1. With the fact that a1 > 0 and a3 > 0 for

Ro > 1, equation (4.37) will have two distinct roots, one positive and the other
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negative, that is

E∗
± =

−a2 ±
√
a22 + 4a1a3
2a1

(4.38)

For the endemic equilibrium to be biologically relevant we take

E∗
+ =

−a2 +
√
a22 + 4a1a3
2a1

(4.39)

We use equation (4.39) in equations (4.31), (4.35) and (4.36) to obtain the expres-

sions I∗, V ∗ and S∗ respectively. That is

I∗ = k1E
∗
+

V ∗ = k4 − k5E
∗
+ (4.40)

S∗ = k6 + ψk5E
∗
+

Equation (4.39) and system (4.40) give us the endemic equilibrium

We are done with finding the endemic equilibrium and thus we proceed to deter-

mine it’s stability. We are going to make use of Lyapunov function to help us

determine the stability. Thus it will make sense if we proceed as follows;

Consider a system of differential equations given by

ẋi = fi(x1, x2, ..., xn) (4.41)

Where ˙ = d
dt

and xi = xi(t). Let x∗i be an equilibrium point of equation (4.41).

A function L is said to be a Lyponov function of equation (4.41) if it satisfies the

following

(i) L(x∗i ) = 0

(ii) L(xi) > 0 for xi ̸= x∗i

(iii) dL
dt

≤ 0 over the solutions of equation (4.41)
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As in (Bate, 2015; Joseph & Solomon, 1961) we state the following principle which

together with a suitable Lypunov function help in determination of the stability

of the EE.

Lasalle Invariance Principle

Assume that L(x) is a Lyapunov function of equation (4.41) on a subset G ⊂ Rn,

n ≥ 1. Define a set S = {x ∈ G : L̇(x) = 0}. Let M be the largest invariant set

contained in S. Then for t ≥ 0, every bounded trajectory of equation (4.41) that

remains in G approaches the set M as t→ ∞

We need to make use of this principle to show the stability of the endemic equi-

librium. Following (Shuai & van den Driessche, 2013) we let

L1 = S − S∗ − S∗ln
S

S∗

L2 = V − V ∗ − V ∗ln
V

V ∗

L3 = E − E∗ − E∗ln
E

E∗

L4 = I − I∗ − I∗ln
I

I∗

To use the principle above, we have to show that L given by L = L1+L2+L3+L4

is a Lyapunov function for the system in equation (3.1)

Let P ∗ = (S∗, V ∗, E∗, I∗) denote the endemic equilibrium. Clearly L(P ∗) = 0.

To show the remaining conditions for a Lypunov function we use the inequality

1− x+ lnx ≤ 0 for x > 0 and the equality only holds if x = 1.

We can write L1 as

L1 = S∗
(
S

S∗ − 1− ln
S

S∗

)
= −S∗

(
1− S

S∗ + ln
S

S∗

)
> 0

since 1− S

S∗ + ln
S

S∗ < 0

Similarly L2 > 0, L3 > 0, L4 > 0 for P ∗ ̸= (S, V, E, I). Thus L > 0 for

P ∗ ̸= (S, V, E, I). We now determine the derivative of the Lyapunov function over
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the solutions of equation (3.1).

Differentiating each of Li, i = 1, 2, 3, 4 and using equation (3.1) we have

L̇1 =

(
1− S∗

S

)[
ϕ− βS(λEE + I)− (η + µ)S + εV + ωR

]
L̇2 =

(
1− V ∗

V

)[
ηS − ψβV (λEE + I)− (b+ µ+ ε)V

]
L̇3 =

(
1− E∗

E

)[
βSλEE + ψβV (λEE)− (r + µ)E

]
L̇4 =

(
1− I∗

I

)[
βSI + βV I − (r + d+ µ)I

]

Using ϕ = βS∗(λEE
∗ + I∗) + (η + µ)S∗ − εV ∗, L̇1 becomes

L̇1 =

(
1− S∗

S

)[
βS∗(λEE

∗ + I∗) + (η + µ)S∗ − εV ∗ − βS(λEE + I)− (η + µ)S + εV
]

= −µ(S − S∗)2

S
+

(
1− S∗

S

)[
βS∗(λEE

∗ + I∗)− εV ∗ + ηS∗ − ηS − βS(λEE + I) + εV
]

≤ βλES
∗E∗

(
1− S∗

S

)(
1− SE

S∗E∗

)
+ βS∗I∗

(
1− S∗

S

)(
1− SI

S∗I∗

)
+ εV ∗

(
1− S∗

S

)(
V

V ∗ − 1

)
+ ηS∗

(
1− S∗

S

)(
1− S

S∗

)
≤ βλES

∗E∗
(
1− SE

S∗E∗ − S∗

S
+

E

E∗

)
+ βS∗I∗

(
1− SI

S∗I∗
− S∗

S
+

I

I∗

)
+ εV ∗

(
V

V ∗ − 1− V S∗

SV ∗ +
S∗

S

)
+ ηS∗

(
2− S∗

S
− S

S∗

)

Let’s assume that individuals who are vaccinated are equal to the individuals

whose immunity wanes and become susceptible again. Then expressing each of

the terms in brackets in terms of the inequality 1−x+ lnx ≤ 0 for any x > 0 then

using the inequality we obtain

L̇1 ≤ βλES
∗E∗

(
E

E∗ − ln
E

E∗ + ln
SE

S∗E∗ − SE

S∗E∗

)
+ βS∗I∗

(
I

I∗
− ln

I

I∗
+ ln

SI

S∗I∗
− SI

S∗I∗

)
+ ηS∗

(
ln
S

S∗ − S

S∗ +
V

V ∗ − ln
V

V ∗

)
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Similarly using the inequality 1− x+ lnx ≤ 0 L̇2, becomes

L̇2 ≤ ψβλEV
∗E∗

(
E

E∗ − ln
E

E∗ + ln
V E

V ∗E∗ − V E

V ∗E∗

)
+ ψβV ∗I∗

(
I

I∗
− ln

I

I∗
+ ln

V I

V ∗I∗
− V I

V ∗I∗

)
+ ηS∗

(
S

S∗ − ln
S

S∗ +
V

V ∗ − ln
V

V ∗

)

For L̇3 we have

L̇3 ≤ βλES
∗E∗

(
ln
E

E∗ − E

E∗ +
SE

S∗E∗ − ln
SE

S∗E∗

)
+ ψβλEV

∗E∗
(
ln
E

E∗ − E

E∗ +
V E

V ∗E∗ − ln
V E

V ∗E∗

)

Finally L̇4 satisfies

L̇4 ≤ βS∗I∗
(
ln
I

I∗
− I

I∗
+

SI

S∗I∗
+ ln

SI

S∗I∗

)
+ ψβV ∗I∗

(
ln
I

I∗
− I

I∗
+

V I

V ∗I∗
− ln

V I

V ∗I∗

)

Recalling the term −µ (S−S∗)2

S
in L̇1 and using the inequalities we have obtained

for L̇1, L̇2, L̇3 and L̇4 we have

dL

dt
≤ −µ(S − S∗)2

S
≤ 0 (4.42)

Clearly from equation (4.42) we see that the equality only holds at the EE. There-

fore by the Lasalle’s Invariance Principle above, the EE is the largest invariance

subset of the system in equation (3.1). Thus all trajectories approach the EE,

hence it is globally asymptotically stable. Biologically this means that as long

as Re > 1 then it is difficult to wipe the disease completely out of the popula-

tion since all solutions will approach the endemic equilibrium which describes the

presence of the disease in the population
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4.4 Numerical Simulations

In this section we carry out numerical simulation of the model in equation (3.1).

The simulation is done specifically to achieve the two specific objectives of our

study. We describe parameter values that will help us carry out numerical simu-

lations.

We estimate some parameters from COVID-19 data available and some from lit-

erature. The table below shows the values of the parameters used in simulation

Table 4.1: Parameter Values

Parameter Value Source

ϕ
β
λE
η
µ
ω
ε
ψ
b
γ
r
d

0.00005 (Niohuru, 2023)
0.5 (Wangari et al., 2021)
0.314 (Wangari et al., 2021)
0.0005 Assumed
0.00005 (“World Population Review”, 2023)
0.0033 (Edridge et al., n.d.)
0.0042 (Hall et al., 2022)
0.2 Assumed

0.0001 Assumed
0.1667 (Lauer et al., 2020)
0.1 (Baloch et al., 2020)

0.0016 (Wangari et al., 2021)

With the parameters above Ro and Re are 3.6625 and 2.7860 respectively. Also

we can determine the numeric value for ηc, that is

ηc =
ϕ(b+ µ+ ε)(Ro − 1)

b+ µ− ϕψRo

= 0.0051

Without booster vaccine, that is for b=0, we have

ηc = 0.0423

We can clearly see that when booster vaccination is included, the critical value to

be vaccinated to achieve elimination of the disease is less compared to when there

is no booster vaccination. We can also compute the values for the DFE before
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and after vaccination is incorporated.

So =
ϕ(b+ µ+ ε)

(b+ µ)(η + µ) + µε

Vo =
ϕη

(b+ µ)(η + µ) + µε

For sensitivity and elasticity analysis of Re, using the values of Ro,Re and recalling

the expressions for elasticity indices for each parameter we obtain the elasticity

index values as shown in the table below.

Table 4.2: Numerical values for elasticity indices

Parameter Elasticity index

ϕ
β
λE
η
µ
ε
ψ
b
γ
r
d

1
1

0.1667
-0.2730

−6.0028× 10−4

0.2566
0.0611
-0.2098
0.2144
-1.2006
-0.4159

The Figures below show how Re varies with our parameters of interest, that is,

the rate of vaccination, the rate of administering booster vaccine and the waning

rate of immunity after vaccination.

47



0 0.2 0.4 0.6 0.8 1

Vaccination rate

0

1

2

3

4

R
e

How vaccination rate affect R
e
 (i)

0 0.2 0.4 0.6 0.8 1

Rate of administering booster vaccine (b)

0

1

2

3

4

R
e

R
e
 against rate of booster vaccination (ii)

0 0.2 0.4 0.6 0.8 1

Waning rate after vaccination

0

1

2

3

4

R
e

Waning rate after vaccination on R
e
 (iii)

0 0.2 0.4 0.6 0.8 1

Efficacy of vaccine

2.7

2.8

2.9

3

3.1
R

e

Efficacy of vaccine on R
e
 (iv)

Figure 4.1: How the effective reproduction number, Re, varies with different pa-
rameters

We can clearly see that from Figure 4.1 (i) and (ii), Re decreases as η and

b increases. For the vaccination rate we observe that for η ≥ 0.0051, Re ≤ 1.

Thus there will be no epidemic. Similarly for booster vaccination we can see that

when b ≥ 0.0101, Re ≤ 1 and therefore no epidemic. Thus increasing the rates

η and b higher than 0.0051 and 0.0101 respectively will reduce Re and in turn

prevent an epidemic to occur. On the waning rate after vaccination, Figure 4.1

(iii), we observe that Re increases as the waning rate (ε) increases. Therefore,

if the immunity after vaccination wanes at a higher rate the disease will remain

in the population. Lastly, for Figure 4.1 (iv), when the vaccine is perfect(ψ = 0)
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Re = 2.725 > 1. Thus there will be an epidemic even if the vaccine is perfect. This

is due to the waning rate of immunity after vaccination which makes individuals

exposed to the infection. We can also see that as the efficacy of the vaccine reduces

(ψ > 0), Re increases.

We now turn our attention to the dynamics of the disease described by the solution

curves of equation (3.10). Since our model includes a vaccine compartment we take

initial data as from the day vaccines were first administered. That is as from 5th

March, 2021. As of 2021, the total population of Kenya was about 53,005,614

(“World Population Review”, 2023). According to the data given by WHO, we

averagely take the initial infectives to be 1000 individuals. As our compartments

represent fractions the initial data will thus be;

S(0) = 0.99998113, V (0) = 0, E(0) = 0, I(0) = 0.00001887, R(0) = 0.

Using the initial data and the parameter values in Table 4.1 we obtain the

following simulations

Figures 4.2 and 4.3 describe the dynamics of COVID-19 when there is no

vaccine but 4.3 only describes how the disease compartments evolve with time.

Similarly, Figures 4.4 and 4.5 describe the dynamics of the disease but only when

the vaccine compartment is included.

49



0 100 200 300 400 500 600 700 800 900 1000

Time(Days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

p
u

la
t
io

n

The dynamics of the disease without vaccination

S

E

I

R

Figure 4.2: Before vaccination
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Figure 4.3: E and I
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Figure 4.4: After Vaccination
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Figure 4.5: E and I

We can see that from Figures 4.2 and 4.3 the disease spreads into the the pop-

ulation with the infective individuals increasing up to a peak of 0.1857 after about

65 days and the spread reduces to almost being depleted and then start increasing

then decreasing to a level which the disease stays in the population. The increase

up to the peak is due to the rapid spread of the disease caused by a high transmis-

sion rate(β = 0.5) and Re > 1 which causes a single infected individual to produce

more than one secondary infections. The reduction is due to most individuals

gaining protective immunity from the infection. The immunity is temporary and

thus the increase and the disease staying in the population is mostly caused by

the re-infection of individuals, the rate of administering booster vaccination is low
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and the rate at which individuals lose vaccine induced immunity is high (about 6

months ), which contributes much on individuals becoming susceptible again even

after vaccination.

From Figure 4.5, we see that the peak is reduced to 0.18 after about 65

days. The curves look similar to the one in Figure 4.3 because of low vaccina-

tion coverage(η = 0.005). Moreover, the rate of administering booster vaccination

is low and the rate at which individuals lose vaccine induced immunity is high

(about 6 months ), which contributes much on individuals becoming susceptible

again even after vaccination. Thus there is need to increase vaccination coverage

and decrease the waning rate of immunity after vaccination. In fact if the rate of

vaccination is at the critical value ηc = 0.0051 we obtain
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Figure 4.6: Vaccination at ηc

0 100 200 300 400 500 600 700 800 900 1000

Time(Days)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
o

p
u

la
t
io

n

Dynamics for E and I  

E

I

Figure 4.7: E and I

We observe that the number of individuals who stay in the population as

vaccinated is much higher in Figure 4.6 than in Figure 4.4. Also comparing Figure

4.7 and Figure 4.4 we clearly see that the peak of infection is low (0.13) and delayed

for about 15 days in Figure 4.7. In addition the number of infectives who stay in

the population is low in Figure 4.7 since a lot of people are vaccinated and gain

protective immunity for some time before the immunity start waning. We can

see that even if the rate of vaccination is done at critical value ηc = 0.0051 the

disease will not be completely eradicated from the population but the severity of
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the disease is reduced since we will have a small number of infected individuals

staying in the population.

If there is no re-infection of individuals then the solution curves for E and I

are as shown below.
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Figure 4.8: Evolution for E and I with no re-infection

We can easily observe that the disease will be wiped out completely as long as

there is no re-infection. As re-infection is evident for COVID-19, it really plays a

big role in the disease staying in the population even if vaccination program is in

place just as seen in the bottom figure of Figure 4.8.
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For waning of immunity after vaccination we have
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Figure 4.9: The Effect of waning immunity after vaccination

We easily observe in Figure 4.9 (i) that the disease is kept low in the population

for some period of time in case the immunity induced by vaccine does not wane.

But this is not enough to eradicate the disease completely out of the population.

For booster vaccination we have the following figure
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Figure 4.10: Evolution for E and I with and without booster vaccination

We observe that when booster vaccination is included, the infection is kept

low in the population for some period of time before it starts increasing to a new

peak. This shows that booster vaccination increases the protection period against

the disease
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CHAPTER FIVE

DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1 Discussion

We saw that using the parameters, Ro = 3.6625(before vaccination) and Re =

2.7860(after vaccination). Ro > 1 which means the endemic equilibrium is stable.

This is evident in Figure 4.2. Also even after vaccination Re > 1, which means

that the disease stay in the population. This is evident in figure 4.4. Showing that

the endemic equilibrium is stable. In both cases all the compartments are positive

and stabilizes in the population. We recall that for DFE,

So =
ϕ(b+ µ+ ε)

(b+ µ)(η + µ) + µε
, (5.1)

With no vaccine we will have

So =
ϕ

µ
(5.2)

Comparing the two expressions from equations (5.1) and (5.2) we have

ϕ

µ
− ϕ(b+ µ+ ε)

(b+ µ)(η + µ) + µε
=

ϕη(b+ µ)

µ(b+ µ)(η + µ) + µε)
> 0 (5.3)

The inequality in (5.3) shows that the susceptible individuals are reduced af-

ter vaccination is incorporated. From numerical simulation we have that before

vaccination S0 = 1 and after vaccination So = 0.3023. Clearly the value after

vaccination is less compared to the value before vaccination which is in line with

analytic results. From figure 4.10, as expected from the literature, when booster

vaccination is included the period of protection against the disease is longer as

compared to when there is no booster vaccination.
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5.2 Conclusion

The infection still persists even when vaccination program is in place. This is due

to low vaccination coverage and temporary immunity gained from the vaccine.

Higher vaccination coverage tends to eliminate the disease from the population

but re-infection as well as waning rate of immunity after vaccination and infection

play a major role for the infection to start increasing again. Booster vaccination

reduces the critical value needed to be vaccinated in order to contain the disease.

Moreover, booster vaccination increases the period of protection against the dis-

ease. The disease staying in the population is due to waning rate of immunity after

vaccination and infection, re-infection of individuals and low vaccination coverage.

5.3 Recommendation

Going for booster vaccination will increase the period of protection of individuals

against the disease, individuals are therefore urged to go for booster vaccination.

Further development of vaccines that improve the protection against the disease

for a longer period is highly recommended. The study has not considered the risk

level of infection in different geographical locations. Moreover time dependent

waning immunity is more practical. A model considering these two aspects is

recommended for future studies.
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