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Question One (20 Marks) 

a) The moment generating function of a random vector  1 2,X X X   is given by  

                      2 2

1 2 1 2 1 1 2 2, exp 2 3 2 2 8M t t t t t t t t        

          Determine the:    (i). Mean vector    (ii). Correlation matrix   (6marks) 

 b) Let A be a 3x3 symmetric matrix of constants and be a dimensional vector. Given 

    that the quadratic form Q is of the form 

                   2 2 2

1 2 3 1 2 1 33 13 10 2Q x X AX x x x x x x x       

 

 (i). Identify A 

 (ii). Show that A is positive definite matrix.     (4 marks) 

 c). Given that: 

                       

1 1
1

6 5 4 0 0
1 1

1 0 9 0
6 5

0 0 25
1 1

1
5 5

P and V

 
 

  
    
  
    

 
  

 

      Determine            (4 marks) 

 d)  Let 1 2,X X  have a bivariate normal distribution  with parameters.  

     2 2

1 2 1 25, 10, 1, 25 0and         . If  24 16 / 5 0.954P X X    ,  

     determine   .         (6 marks) 

Question Two (15 Marks) 

 Let   1 2 3, ,X X X X    be a trivariate normal random vector with mean vector  

       1,2,3   and variance- covariance matrix  

5 2 3

2 3 0

3 0 2

 
 

 
 
  

. Find the following. 

 (i). Mean and variance of 1 2 32 .Y X X X    

 (ii). Mean vector Y  and variance-covariance matrix Y  of  1 2,Y Y Y   where  
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1 1 2 3

2 1 2

Y X X X

Y X X

  

 
 

 (iii). Distribution of 1 2Y and Y . 

 (iv).  Are 1 2Y and Y  independent?      (15 marks) 

Question Three (15 Marks) 

A random sample of size 10  is taken from a bivariate normal population with mean     and 

variance- covariance   both unknown. The sample mean vector x  and the  inverse of the 

sample variance- covariance matrix 1S   were obtained as  

                                   1
3.32 0.266 0.099

1.74 0.099 0.189
S 

   
    

   
 

       At 5%  , test the hypothesis 

                                   0 1

5 5
: :

3 3
H Vs H 

   
    
   

    (8 marks)  

 b)  Let X have the covariance matrix. 

                                 

25 2 4

2 4 1

4 1 9

 
 

  
 
  

 

  Determine  
1

2P and V        (7 marks) 

Question Four (15 Marks) 

 a).  Consider the data matrix 

                                         

1 3 2

2 4 2

5 2 3

X

  
 


 
  

 

      Calculate the generalized sample variance and the total sample variance. (8 marks) 

  b) .  Given the data matrix. 

                                 
3 4 5 4

6 4 7 7
X

 
  
 

 

           Determine the   (i). Covariance matrix 

   (ii). Generalized variance 
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   (iii). Total variance      (7 marks) 

Question Five (15 Marks) 

a)  Let  1 2,X X X   be a random vector whose components are random variables with joint 

probability density function 

                              
 

 1 2 1 2

1 2

2 , 0 2, 0 1
,

0 ,

k x x x x
f x x

elsewhwere

     
 


 

where k is a scalar. Determine the  

(i). value of k 

 (ii). Marginal density of 1 2.X and X  

  (iii). Correlation matrix of X       (8 marks) 

  b).  Using the matrix 

                                  

1 1

2 2

2 2

A

 
 

 
 
  

 

    Calculate  A A  and obtain its eigenvalues. Is . A A  positive definite?.  (7 marks) 

// END// 


