
Applied Mathematical Sciences, Vol. 18, 2024, no. 6, 269 - 279
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ams.2024.919127

A Mathematical Model of Oxygen Dependency on

Temperature and Pollutant Concentration in a River

E. Komu,1 A. A. M. Wasike, S. Muthiga and E. Njuguna

Department of Mathematics and Physical Sciences
Maasai Mara University, Narok, Kenya

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2024 Hikari Ltd.

Abstract

We formulate a model of a set of advection diffusion partial differ-
ential equations governing the concentration of pollutant and oxygen
in a river. It is assumed that the concentration of dissolved oxygen
is strongly influenced by temperature gradient and the concentration
of pollutant is primarily influenced by factors other than temperature,
such as the rate of pollutant input into the river. We use asymptotic
behavior of the solutions to show that when a river is highly polluted,
a slight change in temperature leads to a hypoxia.
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1 Introduction

Dissolved oxygen, (DO), levels is affected by water temperature, ionic strength,
dissolved solids, atmospheric pressure and other parameters, see for instance
[3]. Oxygen solubility decreases as these parameters increase, reducing the
amount of dissolved oxygen in water. Variations in dissolved oxygen occurs
depending on the fluctuations in temperature, see for instance [2]. Dissolved
oxygen concentration below 2 mg/L may adversely affect the survival of aquatic
organisms. This condition is referred to as hypoxia and the waters are referred
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to as hypoxic waters, see for instance [2]. A model incorporating temperature
variation takes the following form:

∂(AP )

∂t
= Dp

∂2(AP )

∂x2
− ∂(AvP )

∂x
−K1

X

X + k
AP + AqH(x), (1)

∂(AX)

∂t
= Dx

∂2(AX)

∂x2
− ∂(AvX)

∂x
−K2

X

X + k
AP + Aβ(S −X)e−λθ,

0 < x < L, t > 0.

where,

H(x) =

{
1, if 0 < x ≤ L,
0, if otherwise,

and is used to capture the fact that pollutant is only discharged for x > 0, L
is the total length of the polluted part of the river (m), Dp is the dispersion
coefficient of pollutant downstream (m2 day−1), Dx is the dispersion coefficient
of dissolved oxygen (m2 day−1), v is the velocity of the water (m day−1), A
is the cross-sectional area of the river (m2), K1 is the degradation rate coeffi-
cient for pollutant (day−1), K2 is the de-aeration rate coefficient for dissolved
oxygen (day−1), k is the half-saturated oxygen demand concentration for pol-
lutant decay (kg m−3), β is the mass transfer of oxygen from the air to water
(m2 day−1), θ denotes temperature, S is the saturated oxygen concentration
(kg m−3), λ is a positive constant and it determines the strength of the effect
of temperature, t denotes time (days), X := X(x, t) is the dissolved oxygen
concentration, P := P (x, t) is the pollutant concentration and q is the rate at
which pollutant is added into the river and x is a position.

The first equation includes both rate of pollutant addition along the river
and its removal by aeration. The second equation is a mass balance for oxygen.
The rate of increase in the concentration of oxygen by movement from the
surrounding air into the river depend on temperature and is proportional to
the saturated concentration S less the concentration X. The rate at which
oxygen is transfered into water from the air through the water surface, per
unit area and time is given by β. Thus, the mass of oxygen that is transfered
through the water surface per unit area and per unit time from the air is
given by β(S −X)e−λθ, where λ > 0, determines the strength of the effect of
temperature θ.

Pimpunchat et al. [5] have analysed the steady-state of Equation (1) but
without the inclusion of temperature and showed that the steady-state solution
depends on parameters k and q. They also showed that the dissolved oxygen
concentration requirement for survival of aquatic animals such as fish is 30%
of the saturated values S.

This paper is organized as follows. In section 2, we analyse the model
without dispersion and a lemma is given and a statement of the main results
is presented. In section 3, we analyse the model with dispersion. In section 4,
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we give simulated results to confirm the analytical findings. We conclude with
a discussion in section 5.

For easy of analysis of Equation (1), we do non-dimensionalization, to re-
duce the number of parameters and group them in a meaningful way. For this
purpose, we define

t̄ :=
v

L
t, x̄ :=

x

L
, X̄ := X, P̄ :=

P

S
, k̄ :=

k

S
, εp =

Dp

L2
, εx =

Dx

L2
, γ =

q

S
, α = β. (2)

and assume that the length per unit time is equal to one; that is, L
v

= 1. We
drop the bars for notational brevity and thus obtain:

∂P

∂t
= εp

∂2P

∂x2
− ∂P

∂x
−K1

X

X + k
P + γ,

(3)

∂X

∂t
= εx

∂2X

∂x2
− ∂X

∂x
−K2

X

X + k
P + β(1−X)e−λθ,

for 0 < x < 1, t > 0.

2 Long-term solution without dispersion

Long-term solution are contained in the steady-state which are attained when
∂(P )
∂t

= ∂(X)
∂t

= 0. With the assumption that the speed of the water is very high
and dispersion coefficient are very small compared to speed of the water, we
ignore the dispersion coefficient; that is, Dp = 0 and Dx = 0, and the system
of partial differential equations in Equation (3) becomes a system of ordinary
differential equations given in Equations (4).

dP

dx
= −K1

X

X + k
P + γ, (4)

dX

dx
= −K2

X

X + k
P + β(1−X)e−λθ.

To find the asymptotic solutions of Equations (4), we state the following
elementary and useful lemma. Its proof can be found in [1, 4].

Lemma 1. Let x ∈ (0,∞) and f : [x,∞)→ R be a differentiable function.
If the limx→∞ f(x) exists and the derivative of the function f(x), f ′(x) is
uniformly continuous on (x,∞), then limx→∞ f

′(x) = 0
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Thus, as x→∞, the asymptotic solutions of the Equations (4) is

(P ?, X?) :=
( γ

K1

(X? + k

X?

)
, 1− γ

K1

K2

β
eλθ
)
. (5)

Through an elementary linearization, we see that if β > γK2eλθ

K1
, then the

point (P ?, X?) is asymptotically stable and the river maintains a sustainable
DO concentration which provides a more favorable habitat.

We now look at the relationship between critical temperature and pollutant
concentration.
There exist critical temperature, θc, beyond which oxygen concentration ap-
proaches zero; that is, X(x) = 0 as x→∞. As the temperature of the water
increases, its ability to hold dissolved oxygen decreases. We show that there
is a temperature, θc,

θc :=
1

λ
ln
(K1βS

qK2

)
, (6)

for which we shall have a catastrophe. If θ ≥ θc, then oxygen levels depletes
making the river ecologically dead, rendering it incapable of supporting aquatic
life. We also show that when θ < θc, the river has sufficient dissolved oxygen
to support aquatic life. Finally we demonstrate that the higher the amount of
pollutant,(q), the smaller the temperature change that leads to a catastrophe.
This is contained in the proposition below.

Proposition 1. There exists a θc where X?(θc, q) = 0, θc is monotonically
decreasing with respect to q.

Proof. Suppose X?(θ, q) = 0 and X?
θ 6= 0, then by the implicit function

theorem, there exist a unique θc := θ(q) such that X?
(
θ(q), q

)
= 0.

A simple computation from X?(θ, q) defined by

X?(θ, q) = 1− qK2

βSK1

eλθ, (7)

in Equation (5) show that

θc =
1

λ
ln
(SK1β

qK2

)
. (8)

Clearly

∂θc
∂q

= − 1

λq
< 0. (9)
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Figure 1: Critical temperature (θc) vs Rate of pollutant addition (q)

Figure 2: Oxygen and Pollutant concentration when θ is large

Graphically, the relationship between critical temperature, (θc), and rate
of pollutant addition, (q), is as illustrated in Figure 1.

When the rate of pollutant addition, q is high, as illustrated in Figure 1,
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small θc is required for the river to be ecologically dead.

From the Figure 2, we observe that when θ is large, the concentration of
oxygen depletes thus rendering the river incapable of supporting aquatic life.

3 Analytic steady-state solution for the model

including dispersion (Dp 6= 0 and Dx 6= 0)

At steady state when the dispersion coefficient are included, that is Dp 6= 0
and Dx 6= 0, the second order derivative holds. The system of partial dif-
ferential equation in Equation (3) becomes a system of ordinary differential
equations, since they involve only one independent variable x hence Equations
(10) and(11) are obtained.

εp
d2P

dx2
− dP

dx
−K1

X

X + k
P + γ = 0; x > 0, t > 0 (10)

εx
d2X

dx2
− dX

dx
−K2

X

X + k
P + β(1−X)e−λθ = 0 (11)

Since Equations (10) and (11) are a second order ODE, we can transform
it to first order ODE via P1 := P , X1 := X, Ẋ1 := X2, Ẋ1 := X2, Ṗ1 := P2, to
obtain:

Ṗ1 = P2,

Ṗ2 = α1P2 + α2
X1

X1 + k
P1 − ϕ, (12)

Ẋ1 = X2,

Ẋ2 = α3X2 + α4
X1

X1 + k
P1 − δ(1−X1).

where, Ṗ = dP
dx

, Ẋ = dX
dx

, α1 = 1
εp

, α2 = K1

εp
, α3 = 1

εx
, α4 = K2

εx
, ϕ = γ

εp
,

δ = β
εx
e−λθ.

Which upon simplification yields;

(P ?
1 , P

?
2 , X

?
1 , X

?
2 ) =

( γ

K1

( k

X?
+ 1
)
, 0, 1− γ

K1

K2

β
eλθ, 0

)
(13)

Proposition 2. The fixed point (P ?
1 , P

?
2 , X

?
1 , X

?
2 ) is unstable whenever it exists.
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Proof. Evaluating the Jacobian matrix of the system (12) at (P ?
1 , P

?
2 , X

?
1 , X

?
2 ),

yields;

J(P ?
1 , P

?
2 , X

?
1 , X

?
2 ) :=


0 1 0 0

α2φ1 α1 α2φ2 0
0 0 0 1

α4φ2 0 α4φ2 + δ α3


(14)

where, φ1 =
(

βK1−γK2eλθ

βK1−γK2eλθ+βkK1

)
, φ2 =

(
kβ2K1γ

(βK1−γK2eλθ)(βK1−γK2eλθ+βkK1)

)
.

The eigenvalues, µ, of J(P ?
1 , P

?
2 , X

?
1 , X

?
2 ) are given by

µ4 +m1µ
3 +m2µ

2 +m3µ+m4 = 0, (15)

withm1 = −(α1+α3), m2 = α3α1−α4φ2−δ−α2φ1, m3 = α1(α4φ2+δ)+α2φ1α3,
m4 = α2φ1 − α2φ2

2α4.
By Routh-Hurwitz criteria, we shall have stability provided; m1 > 0,m3 >

0,m4 > 0 and (m1m2 − m3)m3 − m1
2m4 > 0. It is clear that m1 < 0 since

α1 > 0, α3 > 0 and m3 > 0, if

α1(α4φ2 + δ) + α2φ1α3 > 0. (16)

Equation (16) is satisfied when φ1, φ2 > 0 and is achieved when β > qK2eλθ

SK1
.

Also m4 > 0 if α2φ1 > φ2
2α4α2 and φ1, φ2 > 0. Since m1 < 0, then the fixed

point (P ?
1 , P

?
2 , X

?
1 , X

?
2 ) is unstable, which implies that the river ecosystem is

prone to fluctuations or disturbances which poses challenges to aquatic organ-
isms, affecting their population and the overall ecosystem dynamics due to low
oxygen.

4 Numerical simulation

We use Matlab software for numerical simulations to describe the results for
Equation (3).

Figure 3 show that when the rate of pollutant addition, q is small, the
concentration of pollutant in the river is low and P (x, t)→ 0.15 as x→∞.

Figure 4 shows that when q is high, the concentration of pollutant increases
downstream as distance increases and P (x, t)→ 4 as x→∞.

Therefore, from Figure 3 and Figure 4, we see that pollutant concentration
in a river depends on the rate of pollutant addition q.
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Figure 3: Pollutant concentration when q=0.05

Figure 4: Pollutant Concentration when q = 0.98

Figure 5 shows that when the distance x increases, the concentration of
oxygen slightly decreases but remains high. In this case, we see that when the
temperature of the water in a river is less than the critical temperature, that
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Figure 5: Oxygen Concentration when θ < θc

is, θ < θc, the concentration of oxygen is high and X(x, t)→ 1 as x→∞.

Figure 6: Oxygen concentration when θc = θ

Figure 6 and Figure 7 shows that when distance x increases, the concentra-
tion of oxygen approaches zero, that is X(x, t)→ 0 as x→∞. The decrease in
the concentration of oxygen is more rapidly and significantly when θ = θc and



278 E. Komu. A. A. M. Wasike, S. Muthiga and E. Njuguna

Figure 7: Oxygen concentration when θ > θc

when θ > θc. More precisely, the decrease in oxygen concentration is faster in
the initial stages. Afterwards, the decline rate slows and the concentration of
oxygen gradually approaches zero. Thus, in these two cases, oxygen concen-
tration is not changing with distance as x increases as it goes to zero when
θ = θc and θ > θc respectively.

Thus, we see from Figure 5, Figure 6 and Figure 7 that oxygen concentra-
tion in a river depends on temperature of the water. This results agrees with
analytical results in the sense that, when θ = θc and θ > θc, X → 0 as distance
increases.

5 Conclusion

From the model presented, we have shown that, there is a temperature, θc
beyond which oxygen levels approach zero; that is, X = 0, as x→∞ and if θ ≥
θc, then oxygen levels depletes making the river ecologically dead, rendering it
incapable of supporting aquatic life. We have also shown that if θ < θc, then
the river remains conducive to supporting aquatic life.

Furthermore, we have shown that when the river is highly polluted, a slight
change in temperature leads to catastrophe rendering the river incapable of
supporting aquatic life.

Therefore, it is important to monitor water temperature, oxygen levels and
pollutant concentration in the river to track changes over time to ensure that
oxygen concentration levels in a river remains above a critical threshold.
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We recommend adaptive strategies to address extreme temperature fluctua-
tions and their effects and reduce river pollution.
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