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QUESTION ONE - 30 MARKS

a)

b)

Define a composition series and hence show that the group of integers Z has no
composition series. (3 Marks)
Find a finite abelian group which is isomorphic to each of the following direct product of
cyclic groups of prime power order:

1) ZgXZyxZyxZs

W) ZyxZiyxliy*xTig X Lig*x L (2 Marks)
State and prove the Jordan-Holder theorem. (4 Marks)
Given that K <G , prove that G actson K asagroup by k? =g kg VkeK and geG

(5 Marks)

i) Distinguish between a lower central series and an upper central series. (2 Marks)

i1) Show that every nilpotent group is soluble and hence by a counter example, demonstrate

that the converse is not true. (6 Marks)
Giventhat H and K are groups, show that vh,h'e H and Vk,k'e K,

1) HxK isagroup (5 Marks)
i) HxKzKxH (3 Marks)

QUESTION TWO - 15 MARKS

a)
b)

d)

State the fundamental theorem of finitely generated abelian groups. (2 Marks)
Giventhat H and K are groups and H acts on K, show that the set of all ordered (h, k)
with he H, k e K acquires the structure of a group by (h,,k, )(h,.k,)=(hh,, kk,)

vh,h, e H and vk k, eK. (6 Marks)

If m is asquare free integer, then prove that every abelian group of order m is cyclic.
(3 Marks)

Find all abelian groups of order 360 up to isomorphism. (4 Marks)
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QUESTION THREE - 15 MARKS

a) i) Differentiate between external direct product and internal direct product. (2 Marks)

i) Prove that the external direct product of H and K is abelian ifand only if H and K

are abelian groups. (5 Marks)
b) Find the order of (4,8) in ZyxZ,,. (3 Marks)
c) Let n and m be relatively prime. Show that Z, xZ,, = Z,,, . (5 Marks)
QUESTION FOUR - 15 MARKS
a) i) Define a soluble group. (1 Mark)
ii) Prove that a finite group G is soluble if it contains a normal subgroup K such that K
and G/K are soluble. (5 Marks)
b) Construct an ascending series of a group G. (4 Marks)
c) Definea p - group and hence show that every p -group is nilpotent. (5 Marks)
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