

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATION 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES MASTER OF SCIENCE (APPLIED STATISTICS)

COURSE CODE: STA 8105 COURSE TITLE: THEORY OF ESTIMATION

DATE: 2/2/2024 TIME: 0830-1130 HRS

INSTRUCTIONS TO CANDIDATES

i. Question **ONE** is compulsory

ii. Answer any other TWO questions

QUESTION ONE (20 MARKS)

- a. State three properties of probability density function (3marks)
- b. Consider the problem of DC level in white Gaussian noise with one observed data
- $x(0) = \Theta + w(0)$ where w(0) has the pdf $N(0, \sigma^2)$. Find the PDF of x(0)

(3marks)

c. Consider x(0) = A + w(0) with $W(0) \sim N (0, \sigma^2)$ find the variance

(5marks)

d. Define an efficient estimator

(2marks)

e. Consider DC level WGN with unknown variance x(n)=A+w(n). Suppose that A>0 and $\sigma^2=A$. Find its PDF

(6marks)

QUESTION TWO (20MARKS)

- a. State and explain four asymptotic properties of estimators (8marks)
- b. Consider DC level in WGN with known variance σ^2 . Find its maximum likelihood estimation (12marks)

QUESTION THREE (20MARKS)

a. If x and y are distributed according to a bivariate Gaussian PDF

$$P(x,y) = \frac{1}{2\pi\sqrt{\det(C)}} \quad \exp\frac{1}{2} \begin{bmatrix} X & -E(x) \\ Y & -E(Y) \end{bmatrix}^{T} \quad C^{-1} \begin{bmatrix} X & -E(x) \\ Y & -E(y) \end{bmatrix}$$

Find the conditional PDF p(Y/X)

(10marks)

b. State three properties of MMSE Estimator

(6marks)

c. State four problems with general Bayesian estimator

(4marks)

OUESTION FOUR (20MARKS)

Generate the innovation $x^2[n]=x[n]-x^n[n/n-1]$ which is uncorrelated with previous samples X[n-1]. Then use x^2 (n) instead of X(n) for estimation X[n] is equivalent to($X[n-1],X^2[n]$) (20marks)