

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATION 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES MASTER OF SCIENCE (APPLIED STATISTICS)

COURSE CODE: STA 8103 COURSE TITLE: MEASURE AND PROBABILITY THEORY

DATE: 2/2/2024 TIME: 1430-1730 HRS

INSTRUCTIONS TO CANDIDATES

i. Question **ONE** is compulsory

ii. Answer any other **TWO** questions

QUESTION ONE (20MARKS)

- a. Define the following terms
 - i. δ-field

(2marks)

ii. Burel-field (2marks)

b. Proof that a δ –field is a monotone field and conversely (4marks)

c. What is meant by the term indicator function of a set A (2marks)

d. Proof the following properties of indicator functions:

i. If ACB, then
$$I_A \le I_B$$
 (4marks)

ii.
$$I_{\text{(AUB)}} = I_A + I_B - I_{AB}$$
 (2marks)

iii.
$$I_A^C = 1 - I_A$$
 (2marks)

iv.
$$I_{AB} = I_A I_B$$
 (2marks)

QUESTION TWO (20 MARKS)

Let (Ω, F, μ) be a measure state and let $(f_i)_i^{\infty}=1$ be measurable functions from Ω to R such that $f_i \uparrow f$ a.e and $\int f_1 d\mu > -\infty$, then $\int f_i d\mu \uparrow \int f d\mu$.

Proof (20marks)

QUESTION THREE (20MARKS)

a. Giving examples distinguish between

i.	Convergence a	lmost strictly	(4marks))
----	---------------	----------------	----------	---

ii. Convergence in probability (4marks)

iii. Convergence in L^p (4marks)

iv. Convergence in L^q (4marks)

b. State the Burel _Catelli Lemma (4marks)

QUESTION FOUR (20MARKS)

a. Let f be a non-negative measurable function and t>0. Then (f>t) = [w $\in \Omega$: f(w) > t] $\mu(\{f>t\}) \le t^{-1} \int f d_u$.

Proof (4marks)

b. Let (X,x,μ) and (Y,y,v) be finite measure spaces and let

 $F = \{ECXxY: \iint 1_E(x,y)d\mu(x)dv(y) = \iint 1_E(x,y)dv(y)d\mu(x) \text{ then } XxyCF.$

Proof (6marks)

c. Let $F:R \rightarrow R$ be non-constant, right continuous, and a non-decreasing dF(a,b) = F(b)-F(a).

Proof (10marks)