

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES MASTER OF SCIENCE EXAMINATION

COURSE CODE: MAT 8107

COURSE TITLE: OPERATOR THEORY I

DATE: TIME: 3 Hours

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **TWO** questions

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE – 30 MARKS

- a) State the Lax-Milgram Lemma. (2 Marks)
- **b**) i) What is a linear projection operator? (1 Mark)
 - ii) Given that H is a Hilbert space, prove that $P = P_1 P_2$ is a projection on H if and only if $P_1 P_2 = P_2 P_1$. (4 Marks)
- c) Prove that the spectrum of a bounded self adjoint linear operator $T: H \to H$ on a complex Hilbert space H is real. (5 Marks)
- **d)** Define the spectrum of an operator T hence find the spectrum of the matrix

$$M = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \text{ for } b \neq 0.$$
 (5 Marks)

e) Given that $T \in B(X, X)$ where X is a Banach space, prove that if ||T|| < 1, then $(I - T)^{-1}$ exists as a bounded linear operator on X and $(I - T)^{-1} = \sum_{j=0}^{\infty} T^j = I + T + T^2 + \cdots$

(5 Marks)

- f) Let $T: H \to H$ be a bounded positive self-adjoint operator on a complex Hilbert space H
 - i) Give a precise definition of square root of a positive operator T. (1 Mark)
 - ii) Using the positive square root of T, show that for all $x, y \in H$,

$$\left|\left\langle Tx,y\right\rangle \right| \le \left\langle Tx,x\right\rangle^{\frac{1}{2}} \left\langle Ty,y\right\rangle^{\frac{1}{2}}$$
 (4 Marks)

g) Find a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ which is idempotent but not self adjoint. (3 Marks)

QUESTION TW0 – 15 MARKS

- a) If S is a bounded linear operator on a Banach space X and $||S|| < |\lambda|$, $S_{\lambda} = (\lambda I S)^{-1}$ is a bounded operator. Prove that $S_{\lambda} = \sum_{n=0}^{\infty} \frac{S^n}{\lambda^{n+1}}$ (5 Marks)
- b) i) State Fredholm Equation. (1 Mark)
 - ii) Given the integral operator $T: L_2[0,2\pi] \to L_2[0,2\pi]$ defined by

$$(Tu)(\psi) = \int_{0}^{2\pi} \cos(\psi - y)u(y)dy$$
. Prove that T has exactly one non zero eigen value $\lambda = \pi$ and the corresponding eigen function $u(\psi) = \alpha \cos \psi + \beta \sin \psi$ where α and β are arbitrary constants. (6 Marks)

c) Given that P_1 and P_2 are projections on a Hilbert space H. Prove that if $||P_1x|| \le ||P_2x||$, then $P_1 \le P_2$. (3 Marks)

QUESTION THREE – 15 MARKS

- a) If a sum $P_1 + P_2 + \dots + P_k$ of projections $P_j : H \to H$ (H a Hilbert space) is a projection, show that $||P_1x||^2 + ||P_2x||^2 + \dots + ||P_kx||^2 \le ||x||^2$. (5 Marks)
- **b)** Given that T is a normal operator, prove that $Tx = \lambda x$ if and only if $T^*x = \overline{\lambda} x$. (5 Marks)
- c) Let $T: H \to H$ be a bounded self adjoint linear operator on a complex Hilbert space H. Prove that the residual spectrum of T is empty. (5 Marks)

QUESTION FOUR – 15 MARKS

- a) Prove that the spectral radius and the norm of a self adjoint operator T on X coincide. (4 Marks)
- **b)** Given that $Q: H \to H$ $(Q = S^{-1}PS)$ where S and P are bounded and linear. If P is a projection and S is unitary, then show that Q is a projection. (4 Marks)
- c) Let $T: H \to H$ be a bounded self adjoint linear operator on a complex Hilbert space H, then show that the eigen space of T associated with distinct eigen values are orthogonal.

 (3 Marks)
- **d)** Suppose $T: X \to X$ is a compact linear operator on a normed space X and $\lambda \neq 0$. Then show that $Tx \lambda x = y$ has a solution x if f(y) = 0 for all $f \in X^*$ satisfying $T^*f \lambda f = 0$. (4 Marks)
