

# MAASAI MARA UNIVERSITY

## **SCHOOL OF BUSINESS AND ECONOMICS**

### **REGULAR UNIVERSITY EXAMINATIONS** 2023/2024 ACADEMIC YEAR

## SECOND YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF MASTER SCIENCE IN ECONOMICS AND STATISTICS

### **COURSE CODE: ECS 8204 COURSE TITLE: TEST OF HYPOTHESIS**

Date: JANUARY 2024

**Time: 3 HOURS** 

INSTRUCTIONS TO CANDIDATES

Answer question ONE (compulsory) and any other TWO questions.

#### **QUESTION ONE (30 MARKS)**

a) Define the following terms:

|      | 8                  |          |
|------|--------------------|----------|
| i)   | Type I error       | [1 mark] |
| ii)  | Type II error      | [1 mark] |
| iii) | Most powerful test | [2 mark] |

b) Suppose we want to carry out the following hypothesis test for the mean,  $\mu$ , of a normal distribution, with known variance,  $\sigma^2 = 125$ ; H<sub>0</sub>:  $\mu = 100$ and H<sub>1</sub>:  $\mu > 100$ . Suppose we decide to take a sample of size 36 and the level of significance, at  $\alpha$ =0.05.

| i) What is the critical region? [2 marks] | i) | What is the critical region? | [2 marks] |
|-------------------------------------------|----|------------------------------|-----------|
|-------------------------------------------|----|------------------------------|-----------|

- ii) What is the power of the test at  $\mu = 110$ ? [2 marks]
- c) In Comparing the variability of the tensile strength of two kinds of of structural steel, an experiment yielded the following results: m = 13, n = 16, the sample variance of the first sample was  $S_1^2 = 19.2, S_2^2 = 3.5$ . Assuming that the measurement constitutes an independent random sample from normal population. Test the null hypothesis that:

$$H_0: \sigma_1^2 = \sigma_2^2$$
 Against  $H_1: \sigma_1^2 \neq \sigma_2^2$  at  $\alpha = 0.05$  [5 marks]

d) Suppose that the distribution of lifetimes of TV tubes can be modelled by an exponential distribution with mean  $\theta$ . So  $f(x, \theta) = \begin{cases} \frac{1}{\theta} e^{\frac{x}{\theta}} & \text{for } x \ge 0\\ 0 & \text{Otherwise} \end{cases}$ 

Under usual conditions, the mean lifetime is 2000hrs but if a fault occurs, the mean lifetime drops to 1000hrs. A random sample of 20 tubes lifetime is taken in order to test the hypothesis  $H_0: \theta = 2000$  against  $H_1: \theta = 1000$ . Use Neyman-Pearson lemma to find the Most Powerful test with  $\alpha$  level of significance.

[5 marks]

- e) A food processing company packages honey in glass jars. Each jar is supposed to contain 10 litres of honey. Previous experience suggests that the volume X, of a randomly selected jar of the company's honey is normally distributed with a known variance of 0.02. Derive the generalized likelihood ratio test for testing, at a significance level of  $\alpha = 0.01$ , the null hypothesis  $H_0: \mu = 10$  against the alternative hypothesis  $H_1: \mu \neq 10$  (6 marks)
- f) Four different brands of margarine were analyzed to determine the level of some unsaturated fatty acids. The data are shown below. Perform an appropriate non parametric test at  $\alpha = 0.05$ . (6 marks)

| Brand | Fatty Acids (%) |      |      |      |      |
|-------|-----------------|------|------|------|------|
| А     | 13.5            | 13.4 | 14.1 | 14.2 |      |
| В     | 13.2            | 12.7 | 12.6 | 13.9 |      |
| С     | 16.8            | 17.2 | 16.4 | 17.3 | 18.0 |
| D     | 18.1            | 17.2 | 18.7 | 18.4 |      |

#### **QUESTION TWO (20 MARKS)**

- a) Let (x<sub>1</sub>, y<sub>1</sub>), (x<sub>2</sub>, y<sub>2</sub>) ...... (x<sub>n</sub>, y<sub>n</sub>) be a random sample of size n from the bivariate normal population. Derive the test statistic for testing the hypothesis H<sub>0</sub>: ℓ = 0 against H<sub>1</sub>: ℓ ≠ 0, where ℓ is the correlation co-efficient between X and Y. [12 marks]
- b) Use the test statistic derived in (a) to test the hypothesis H<sub>0</sub>: ℓ = 0 against H<sub>1</sub>: ℓ ≠ 0 at α = 5% if the observations are (33, 24), (60, 34), (19, 64) (19, 24), (39, 34), assuming this sample is drawn from a bivariate normal population. [8 marks]

#### **QUESTION THREE (20 MARKS)**

 a) Let X and Y be two independently distributed random variables with distributions X ~N [μ<sub>1</sub>,σ<sub>1</sub><sup>2</sup>] and Y~ [μ<sub>2</sub>,σ<sub>2</sub><sup>2</sup>] respectively. Let x<sub>1</sub> x<sub>2</sub> ..... x<sub>m</sub> be a random sample of size m from X and y<sub>1</sub>, y<sub>2</sub>, ...., x<sub>n</sub> be Another independent random sample of size n from Y.

Derive the likelihood ratio test for testing H<sub>0</sub>:  $\mu_2 = \mu_1$  against H<sub>1</sub>:  $\mu_1 \neq \mu_2$ , Assuming  $\sigma_1^2 = \sigma_2^2 = \sigma^2$  [16 marks]

b) The following statistics were obtained from data drawn from two independent populations X and Y which are normally distributed as follows: X ~N [ $\mu_1, \sigma_m^2$ ] and Y~ [ $\mu_2, \sigma_n^2$ ]

$$\overline{X} = 1.02,$$
  $\sum_{i=1}^{m} (X_1 - \overline{X})^2 = 2.44, m = 11$   
 $\overline{Y} = 1.66,$   $\sum_{i=1}^{n} (Y_1 - \overline{Y})^2 = 4.23, n = 13$ 

Test H<sub>0</sub>:  $\mu_1 = \mu_2$  against H<sub>1</sub>:  $\mu_1 \neq \mu_2$ . Use  $\infty = 5\%$  [4 marks]

#### **QUESTION FOUR (20 MARKS)**

- a) State Neyman-Person Lemma for testing a simple hypothesis against simple alternative hypothesis. [4 marks]
- b) Let x<sub>1</sub>, x<sub>2</sub>, .... X<sub>n</sub> be a random sample from a normal variable X with mean μ and variance σ<sup>2</sup>, where both μ and σ<sup>2</sup> are unknown.
  Derive the test statistic for testing H<sub>0</sub>: σ<sup>2</sup> = σ<sub>0</sub><sup>2</sup>, against H<sub>1</sub>: σ<sup>2</sup> ≠ σ<sub>0</sub><sup>2</sup>.
  Use ∝ % [10 marks]

c) A random sample of n = 7 observations from a normal population produced the following measurements: 4, 0, 6, 3, 3, 2, 5, 9. Do the data provide sufficient evidence to indicate that  $\sigma^2 > 1$ ? Test using  $\infty = 0.05$  [6 marks]

#### **QUESTION FIVE (20 MARKS)**

- a) (i) Let (x<sub>1</sub>, y<sub>1</sub>), (x<sub>2</sub>, y<sub>2</sub>) ...... (x<sub>n</sub>, y<sub>n</sub>) be a random sample of size n from the bivariate normal population. Derive the test statistic for testing the hypothesis H<sub>0</sub>: ℓ = 0 against H<sub>1</sub>: ℓ ≠ 0, where ℓ is the correlation co-efficient between X and Y. [9 marks]
  - (ii) Use the test statistic derived in (a) to test the hypothesis H<sub>0</sub>: ℓ = 0 against H<sub>1</sub>: ℓ ≠ 0 at ∝ = 5% if the observations are (33, 24), (60, 34), (19, 64) (19, 24), (39, 34), assuming this sample is drawn from a bivariate normal population. [5 marks]
- b) Use a Mann-Whitney U test to test if heart rate differs between men and women at the 95% level of significance. [6 marks]

| Heart rate women<br>(bmp) | Heart rate men<br>(bmp) |
|---------------------------|-------------------------|
| 84                        | 80                      |
| 81                        | 74                      |
| 80                        | 73                      |
| 70                        | 72                      |
| 72                        | 78                      |
| 69                        | 75                      |
| 65                        | 70                      |
| 74                        | 74                      |
| 80                        | 69                      |