

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2022/2023

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

BACHELOR'S OF SCIENCE APPLIED STATISTICS WITH COMPING AND BACHELOR'S OF SCIENCE MATHEMATICS FIRST YEAR SECOND SEMESTER

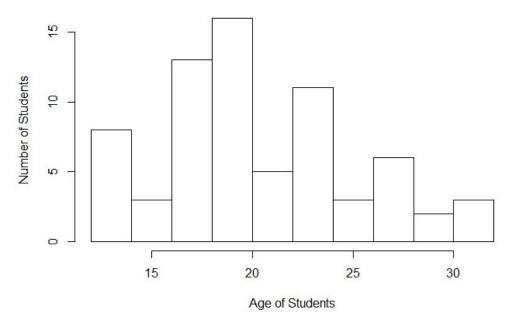
COURSE CODE: STA 1209-1

COURSE TITLE: Computing Methods I

DATE:

TIME:

INSTRUCTIONS: Attempt Question one and any other Two Questions


Question One

- a. Determine the results of the following computations in R.
 - i.5327/(45 + 34).(1 mark)ii.(12 + 60) < = (73).(1 mark)
 - iii.73%%9.(1 mark)iv.(125%%8)>3.(1 mark)
 - v. (71%%6) < = (65%%11).
- b. Four vectors were defined as follows;

v=c(23,45,67,12,67,8,90)
x=c(4L,5L,8L,2L,6L,5L)
y=c("John",45,6L,"Samwel",34,5L)
s=c(4i,6i,5L,7L,56,32)

Determine the appropriate class for the vectors v, x, y and s. (4 marks)

- c. Write an R function that will be used to compute the volume of any cylinder given the diameter and height of cylinder. (4 marks)
- d. The figure below shows the distribution of student ages. Use it to answer the questions that follows;

Histogram for Age of Students

i. Using the variables "Age" write an R code that was used to construct the figure. (3 marks)

ii. Describe the distribution of the student age based on the plot. (2 marks)

iii. State the best measure of central tendency and dispersion for the student Age.

(2 marks)

(1 mark)

Question Two

The extract below shows the first five observations of the data set **Students** use it to answer the questions that follows.

##		ID	Age	Gender	Weight	Height	Balance
##	1	7830	15	1	17	1.55	2614
##	2	3833	22	1	40	2.33	2533
##	3	5757	26	1	88	1.18	2571
##	4	2623	13	1	71	2.00	2589
##	5	741	22	1	114	2.71	2570
##	6	6173	19	1	93	1.52	2601

Write R codes that will be used to do the following on the data set.

a.	Create a variable Gender2 which has the actual values of the variable Gen $(Male = 1, Female = 0)$.	der such that (2 marks)				
b.	Create a variable BMI which is given by the formula $\left(BMI = \frac{Weight}{Height^2}\right)$.	(2 marks)				
c.	Code the variable into Age_Group such that ($Age < 19 = Teenager$, 19 Youth, $36 \le Age \le 59 = MiddleAge$, $Age \ge 60 = Retired$).	$\leq Age \leq 35 =$ (3 marks)				
d.	Filter out male students who have a fee balance of above 2500.	(2 marks)				
e.	Filter out Female students who are aged above 23 years and weigh less that	n 60 kg.				
		(2 marks)				
f.	Construct a boxplot for Age based on different gender.	(2 marks)				
g.	Plot a pie chart for "Gender2".	(2 marks)				
Ouestion Three						

Question Three

- a. Discuss the three control structures used in programming. (6 marks)
- b. Write the code for an R function that will accept coefficients of a quadratic equation as parameters then use the coefficients to determine the roots of the quadratic equation. (5 marks)
- c. Write code for an R function used in computing the surface area of an open cone.

(4 marks)

Question Four

a. Below is a system of linear equation. Write down a sequence of R code that would be used to solve the linear system of equations using matrix algebra. (6 marks)

2x + 3y - 4z + 6w = 180 x + 14y + 2z - 3w = 236 9x - 2y - 3z + 12w = 3507x + y + 3z - 8w = 45

b. Let X be a random variable with probability density function.

$$f(x) = \begin{cases} 0.2e^{-0.2x} & x > 0\\ 0 & otherwise \end{cases}$$

Write down an R function that can simulate *n* values of *X*. (6 marks)

c. Write an R code that would be used to generate squares of even numbers between 100 and 200 inclusive starting with the square of 200. (3 marks)