

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTHY SCIENCES MASTER OF SCIENCE IN PHYSICS (ELECTRONICS)

COURSE CODE: PHY 8210
COURSE TITLE: INTEGRATED LECTRONICS

DATE: 19/4/2023 TIME: 1100-1400 HRS

INSTRUCTIONS TO CANDIDATES

1. Answer Question **ONE** and any other **Two** questions

This paper consists of four printed pages. Please turn over.

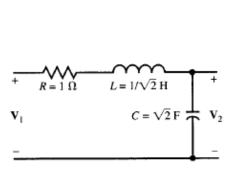
Question one [30 Marks]

(a) Define the following terms	[5marks]
i. Noise	
ii. 555 timers	
iii. An analog circuit	
iv. An active filter	
v. An instrumentation amplifier	
(b) Draw a circuit diagram of a basic diode-based log amplifier.	[4marks]
(c) Explain the main drawback of the analog circuits.	[2marks]
(d) Draw a well labelled circuit of basic Sample-and-Hold amplifier.	[4marks]
(e) State three applications of a high-speed analog-to-digital converter.	[3marks]
(f) Differentiate between digital to analog converters and analog to digital converters.	[4marks]
(g) State four analog physical quantities found in nature.	[4marks]
(h) State and explain two sources of electronic noise.	[4marks]
QUESTION TWO [20 MARKS]	
(a). (i) State two examples of digital computer circuits	[2marks]
(ii) Discuss the operation of a digital circuit.	[4marks]
(b) Explain two advantages of digital circuit over analog circuit.	[4marks]
(c) State and explain three differences between analog and digital circuits.	[6marks]
(d) With suitable circuit diagrams, differentiate between a low pass filter an	nd a high
pass filter	[4marks]
QUESTION THREE [20MARKS]	
(a) Explain two advantages of a binary system	[4marks]
(b) Draw a well-labelled diagram of:	
(i) the block diagram of a counter-ramp and a successive approximation converter.	A–D [4marks]
(ii) the analog waveforms in a counter-ramp A–D converter.	[3marks]

- (iii) the analog waveforms in a successive approximation A–D converter. [3marks]
- (c) Describe the operation of an analog comparators.

[4marks]

(d) Differentiate between neural systems and fuzzy logic systems


[2marks]

QUESTION FOUR [20MARKS]

- (a) Find the network function V_2 / V_1 in the circuits shown in Fig.
 - (i) 1 (a) (ii) 1 (b)

[3marks]

[3marks]

 $V_1 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_2 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_3 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_4 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_4 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_5 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_7 \circ \bigvee_{\sqrt{2}/2} \Omega$ $V_8 \circ \bigvee$

2 F

Fig 1 (a)

(b) State and explain the successive approximation A–D converter

[4marks]

(c) Discuss two applications of DACs and ADCs

[4marks]

(d) Draw a block diagram of a triangular wave generator. Explain how it works.

[4marks]

(e) State two noncomputer applications of digital circuits

[2marks]

QUESTION FIVE [20MARKS]

(a) Draw a circuit diagram of a Schmitt trigger

[3marks]

(b) What is an Analog comparator? Explain its working principle.

[5marks]

(c) A sample of Si is doped with 10^{16} phosphorus atoms/cm³. Find the Hall voltage in the sample with W=500 μ m, A=2.5×10⁻³ cm², I=1 mA, and B_z=10⁻⁴ Wb/cm².

[4marks]

- (d) Briefly explain the basic operation of a Sample and Hold Amplifier. [4marks]
- (e) Explain two advantages of implementing a lock—in amplifier using digital technologies [4marks]