

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/23 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED and HEALTH SCIENCES BACHELOR OF SCIENCE (PHYSICS)

COURSE CODE: PHY 4253

COURSE TITLE: HEAT AND MASS TRANSFER

DATE: 20th April 2023

TIME:

0830-1030

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Use of sketch diagrams where necessary and brief illustrations are encouraged.
- 3. Read the instructions on the answer booklet keenly and adhere to them.
- 4. Tables and constants in the appendix at the end of the paper may be used.

QUESTION ONE: [30 marks]

- a) Heat transfer can be explained using the laws of thermodynamics. Which laws explicitly explain this phenomenon. (2mks)
- b) Explain the heat transfer problems encountered in real life practice. (4mks)
- c) You are to design a heat exchanger.
 - i. State the study technique you will employ (1mk)
 - ii. what are the advantages of the study technique you have chosen. (2mks)
- d) Describe fully the equation $\dot{Q}_{conv} = hA(T_s T_{\infty})$. Under what circumstances does it apply? (5mks)
- e) Water is poured onto a smooth floor, with aid a well labeled diagram, show all the horizontal and vertical layers of the flowing water after turbulence is attained. (7mks)
- f) Define absorptivity α , reflectivity ρ , and transmissivity τ of a thin surface, include the information on a single diagram. (4mks)
- g) Metallic water supply systems were changed to plastic pipes. This was to cure what type of fouling (2mks)
- h) The human eye is more sensitive in detecting EM radiations at about 500 nm (blue-green light), if this coincides with the λ_{max} for the sun (a blackbody), calculate the sun's surface temperature. (3mks)

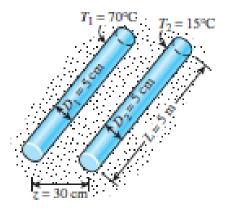
QUESTION TWO: [20 marks]

- a) State two factors that make heat transfer by thermal radiation more effective (2mks)
- b) A 20 cm diameter spherical ball at 800 K suspended in air in an enclosed room. Assuming the ball closely approximates a blackbody, determine [Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8}$ W/m²·K⁴]
 - i. the total blackbody emissive power, (2mks)
 ii. the total amount of radiation emitted by the ball in 5 min, and (4mks)
 - iii. the spectral blackbody emissive power at a wavelength of 3 μ m. (4mks)

c) During the flow of air at $T_{\infty} = 20$ °C over a plate surface maintained at a constant temperature of $T_s = 160$ °C, the dimensionless temperature profile within the air layer over the plate is determined to be $\frac{T(y) - T_{\infty}}{T_s - T_{\infty}} = e^{-ay}$, where a = 3200 m⁻¹ and y is the vertical distance measured from the plate surface in m. Determine the heat flux on the plate surface and the convection heat transfer coefficient.

(8mks)

QUESTION THREE: [20 marks]


- a) Water is to be heated from $15 \,^{\circ}C$ to $75 \,^{\circ}C$ as it flows through a 3 cm internal diameter 5 m long tube. The tube is equipped with an electric resistance heater that provides uniform heating throughout the surface of the tube. The outer surface of the heater is well insulated, so that in steady operation all the heat generated in the heater is transferred to the water in the tube. If the system is to provide hot water at a rate of 10 L/min, determine the power rating of the resistance heater. Also, estimate the inner surface temperature of the tube at the exit. (15mks)
- b) A 2 m long, 0.3 cm diameter electrical wire extends across a room at 15°C. Heat is generated in the wire as a result of resistance heating, the surface temperature of the wire is measured to be 152 °C in steady operation. Also, the voltage drop and electric current through the wire are measured to be 60 V and 1.5 A, respectively. Disregarding any heat transfer by radiation, determine the convection heat transfer coefficient for heat transfer between the outer surface of the wire and the air in the room. (5mks)

QUESTION FOUR: [20 marks]

- a) State four ways by which heat transfer is enhanced in a heat exchanger (4mks)
- b) A new heat exchanger is assumed to have a fouling factor of zero, what would cause this factor to increase? (3mks)
- c) Charge-coupled device (CCD) image sensors, that are common in modern digital cameras, respond differently to light sources with different spectral distributions. Daylight and incandescent light may be approximated as a blackbody at the effective surface temperatures of 5800 K and 2800 K, respectively. Determine the fraction of radiation emitted within the visible

spectrum wavelengths, from 0.40 μ m (violet) to 0.76 μ m (red), for each of the lighting sources. What observations can you make? (7mks)

d) A 5 m long section of hot- and cold-water pipes run parallel to each other in a thick concrete layer, as shown below.

The diameters of both pipes are 5 cm, and the distance between the centerline of the pipes is 30 cm. The surface temperatures of the hot and cold pipes are 70°C and 15°C, respectively. Taking the thermal conductivity of the concrete to be $0.75 \text{ W/m}\cdot\text{K}$, determine

- i. The rate of heat transfer between the pipes. (5mks)
- ii. How can the heat loss for this configuration be reduced. (1mk)

Appendix:

Stefan–Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ Wien's constant = $2.898 \times 10^{-3} \text{ m.K}$ $C_1 = 2\pi h c_0^2 = 3.74177 \times 10^8 \text{ W} \cdot \mu \text{ m}^4/\text{m}^2$ $C_2 = h c_0 / k = 1.43878 \times 10^4 \mu \text{ m} \cdot \text{K}$ The properties of oil at 80 °C are $\rho = 852 \text{ kg/m}^3$ k = 0.138 W/m.K $v = 3.794 \times 10^{-5} \text{ m}^2/\text{s}$ Pr = 499.3

Table 1: Blackbody radiation function, f_{λ}

T -m K		17 or K	,
λ <i>Τ</i> , μm-K	<i>t</i> ₂	λ <i>Τ</i> , μm-K	<i>t</i> ₁
200	0.000000	6200	0.754140
400	0.000000	6400	0.769234
600	0.000000	6600	0.783199
800	0.000016	6800	0.796129
1000	0.000321	7000	0.808109
1200	0.002134	7200	0.819217
1400	0.007790	7400	0.829527
1600	0.019718	7600	0.839102
1800	0.039341	7800	0.848005
2000	0.066728	8000	0.856288
2200	0.100888	8500	0.874608
2400	0.140256	9000	0.890029
2600	0.183120	9500	0.903085
2800	0.227897	10,000	0.914199
3000	0.273232	10,500	0.923710
3200	0.318102	11,000	0.931890
3400	0.361735	11,500	0.939959
3600	0.403607	12,000	0.945098
3800	0.443382	13,000	0.955139
4000	0.480877	14,000	0.962898
4200	0.516014	15,000	0.969981
4400	0.548796	16,000	0.973814
4600	0.579280	18,000	0.980860
4800	0.607559	20,000	0.985602
5000	0.633747	25,000	0.992215
5200	0.658970	30,000	0.995340
5400	0.680360	40,000	0.997967
5600	0.701046	50,000	0.998953
5800	0.720158	75,000	0.999713
6000	0.737818	100,000	0.999905

Table 2: Nusselt number for fully developed laminar flow in a circular annulus with one side insulated and the other isothermal

D_l/D_o	Nu	Nue
0.00	_	3.66
0.05	17.46	4.06
0.10	11.56	4.11
0.25	7.37	4.23
0.50	5.74	4.43
1.00	4.86	4.86

Temp. T, °C	Saturation Pressure		nsity kg/m³ Vapor	Enthalpy of Vaporization			Condu	rmal ctivity /m·K Vapor		Viscosity g/m-s		ndti nber r Vapor	Volume Expansion Coefficient β, 1/K
	P _{sat} , kPa	Liquiu	тари	h _{te} , kJ/kg	Liquid	vapur	Liquiu	тари	Liquiu	Vapor	Liquiu	чарог	Liquid
0.01	0.6113	999.8	0.0048		4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00	-0.068×10^{-3}
5	0.8721	999.9	0.0068		4205	1857	0.571	0.0173	1.519×10^{-3}	0.934 × 10-5	11.2	1.00	0.015 × 10-3
10	1.2276	999.7	0.0094		4194	1862	0.580	0.0176	1.307×10^{-3}	0.946 × 10 ⁻⁵	9.45	1.00	0.733×10^{-3}
15	1.7051	999.1	0.0128	2466	4185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10^{-3}
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10^{-3}
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10^{-3}
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-3}
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-3}
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00	0.377 × 10-3
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00	0.415×10^{-3}
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00	0.451×10^{-3}
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00	0.484×10^{-3}
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00	0.517×10^{-3}
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}	1.110×10^{-5}	2.75	1.00	0.548×10^{-3}
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126 × 10-5	2.55	1.00	0.578 × 10-3
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142 × 10-5	2.38	1.00	0.607 × 10-3
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00	0.653×10^{-3}
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-3}
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240	0.315×10^{-3}	1.193×10^{-5}	1.96	1.00	0.702×10^{-3}
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-5}	1.85	1.00	0.716×10^{-3}
100	101.33	957.9	0.5978		4217	2029	0.679	0.0251	$0.282\times10^{\scriptscriptstyle -3}$	1.227×10^{-5}	1.75	1.00	0.750×10^{-3}

Table 4: Properties of air at 1 atm pressure

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp. <i>T</i> , °C	Density ρ , kg/m ³	Specific Heat c _p , J/kg-K	Thermal Conductivity k, W/m-K	Thermal Diffusivity α, m ² /s	Dynamic Viscosity µ, kg/m·s	Kinematic Viscosity v, m²/s	Prandtl Number Pr
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-150	2.866	983	0.01171	4.158×10^{-6}	8.636×10^{-6}	3.013×10^{-6}	0.7246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.7263
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0.7440
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.7436
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.02134			1.087×10^{-5}	0.7425
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								0.7408
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.02288				0.7387
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.02364				0.7362
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-			0.02401		1.754×10^{-5}		0.7350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.7336
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.225	1007	0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5}	0.7323
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1.204	1007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.7309
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1.184	1007	0.02551	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.7296
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	1.164	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.7282
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	1.145	1007	0.02625	2.277 × 10 ⁻⁵	1.895×10^{-5}	1.655×10^{-5}	0.7268
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1.127	1007	0.02662	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.7255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1.109	1007	0.02699	2.416×10^{-5}	1.941×10^{-5}	1.750×10^{-5}	0.7241
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1.092	1007	0.02735	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7228
80 0.9994 1008 0.02953 2.931 × 10 ⁻⁵ 2.096 × 10 ⁻⁵ 2.097 × 10 ⁻⁵ 0 90 0.9718 1008 0.03024 3.086 × 10 ⁻⁵ 2.139 × 10 ⁻⁵ 2.201 × 10 ⁻⁵ 0 100 0.9458 1009 0.03095 3.243 × 10 ⁻⁵ 2.181 × 10 ⁻⁵ 2.306 × 10 ⁻⁵ 0	60	1.059	1007	0.02808	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
90 0.9718 1008 0.03024 3.086 × 10 ⁻⁵ 2.139 × 10 ⁻⁵ 2.201 × 10 ⁻⁵ 0.001 × 10 ⁻⁵ 100 0.9458 1009 0.03095 3.243 × 10 ⁻⁵ 2.181 × 10 ⁻⁵ 2.306 × 10 ⁻⁵ 0.000 × 10 ⁻⁵	70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.7177
100 0.9458 1009 0.03095 3.243 × 10 ⁻⁵ 2.181 × 10 ⁻⁵ 2.306 × 10 ⁻⁵ 0	80	0.9994	1008	0.02953	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7154
	90	0.9718	1008	0.03024	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.7132
120 0 8977 1011 0 02225 3 565 x 10-5 2 264 x 10-5 2 522 x 10-5 0	100	0.9458	1009	0.03095	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7111
170 0.177 001 0.1775 A.00 K.0 * 7.709 K.0 * 7.377 K.0 * 1	120	0.8977	1011	0.03235	3.565×10^{-5}	2.264 × 10 ⁻⁵	2.522 × 10 ⁻⁵	0.7073