UNIVERSITY EXAMINATIONS, 2023 FIRST YEAR EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE MAT 8211- Applied Dynamical systems I

Instructions to candidates:

Answer Question ONE and any other Two Questions. All Symbols have their usual meaning

DATE: 2023 **TIME:**. 9.00 A.M. To 12.00 A.M.

Question 1 (30 Marks)

(a) Consider an autonomous nonlinear system of differential equations,

$$
\dot{x} = f(x, \mu),\tag{1}
$$

with $x \in U \subset \mathbb{R}^n$, $\mu \in V \subset R$ where U and V are open sets in \mathbb{R}^n and \mathbb{R} , respectively. μ is a parameter. Explain clearly how you may completely analyse it.You have, among other aspects include, normal form, codimension, rescaling, local and global bifurcations. (6 Marks)

(b) (Saddle-node bifurcation in ecology) Consider the following differential equation, which models a single population under constant harvest:

$$
\dot{x} = rx(1 - \frac{x}{K}) - \mu,\tag{2}
$$

where x is the population number; r and K are the intrinsic growth rate and the carrying capacity of the population, respectively, and μ is the harvest rate, which is a control parameter. Find a parameter value μ_0 , at which the system has a Saddle-node bifurcation, and check the generacity conditions. Sketch a bifurcation diagram in the (μ, x) -plane and indicate on it the direction of the flow with the types of stability. Based on the analysis, explain what might be a result of overharvesting on the ecosystem dynamics. Is the bifurcation catastrophic in this example? (7 Marks)

(c) (Neimark-Sacker bifurcation in the delayed logistic equation) Consider the following recurrence equation:

$$
u_{k+1} = ru_k(1 - u_{k-1}).
$$
\n(3)

This is a simple population dynamics model, where u_k stands for the density of a population at time k , and r is the growth rate. It is assumed that the growth is determined not only by the current population density but also by its density in the past, u_{k-1} . Let $v_k := u_{k-1}$. Rewrite the difference equation in the form

$$
u_{k+1} = f_1(u_k, v_k; r),
$$

\n
$$
v_{k+1} = f_2(v_k).
$$
\n(4)

Hence write down the two-dimensional system discrete-time dynamical system in the form:

$$
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} f_1(x_1, x_2; r) \\ f_2(x_1) \end{pmatrix}, \tag{5}
$$

where $x_1 := u_k, x_2 := v_k$. Find the nontrivial fixed point $(x_1, x_2), x_1 = x_2$ and the value of r at which we have a Neimark-Sacker bifurcation. Give a detailed analysis of your working. (7 Marks)

(d) (Just Elementary facts) Consider the planar differential equation below;

$$
\begin{array}{rcl}\n\dot{x} & = & x(150 - x - 3y), \\
\dot{y} & = & y(100 - 2x - y), \quad (x, y) \in R^2.\n\end{array} \tag{6}
$$

• Draw the $x-$ and $y-$ nullclines for this system. (2 Marks)

• Find all equilibria points for this system and sketch their locations on your picture of nullclines. (4 Marks)

- Indicate by little arrows the direction of the vector field in all regions bounded by the nullclines. (2 Marks)
- What can you say about the fate of the solution curve beginning at $(60, 20)$? Sketch this solution curve. (1 Marks)
- What about the fate of the solution beginning at $(20, 20)$? What are the possible fates for this solution? (1 Marks)

Question 2 (15 Marks)(Insect (Spruce Budworm)-outbreak model)

Below is a model for the spruce budworm population at time $t, x := x(t)$ surviving on a forest foliage of size $y := y(t)$:

$$
\begin{array}{rcl}\n\dot{x} & = & rx(1 - \frac{x}{y}) - \frac{Fx^2}{L^2 + x^2} =: f(x, y), \\
\dot{y} & = & \lambda - \alpha x =: g(x, \lambda),\n\end{array} \tag{7}
$$

where F, L, λ, α are positive constants. By studying the system above do the following:

- (a) Verify that $f_y(x, y) > 0$ and $g_x(x, \lambda) < 0$ for all $x, y > 0$. (2 Marks)
- (b) Show that there exists a nonnegative function $\varphi(x)$ for $x > 0$ such that $f(x, \varphi(x)) =$ 0, and find this function. (2 Marks)
- (c) Show that there is a function $\bar{x} := \bar{x}(\lambda) > 0$ with $g(\bar{x}(\lambda), \lambda) = 0$ and $g_x(\bar{x}(\lambda)) < 0$. (2 Marks)
- (d) Show that the stationary point $(\bar{x}, \varphi(\bar{x}))$ is stable when $\varphi'(\bar{x}) > 0$ and unstable when $\varphi'(\bar{x}) < 0$; the prime denotes differentiation with respect to x. (3 Marks)
- (e) Let $\xi := (\bar{x}(\hat{\lambda}), \varphi(\bar{x}(\hat{\lambda})))$ be a Poincaré-Andronov- Hopf (PAH) bifurcation point for Equation(7) above. Prove that a necessary condition for a PAH bifurcation to occur at ξ is

$$
f_{xx}(\xi) \neq 0, g_{\lambda}(\xi) \neq 0. \tag{3 Marks}
$$

(f) Sketch the bifurcation diagram in the x, y -plane. Indicate on the diagram where the flow is stable, unstable, and the PAH bifurcation points. (3 Marks)

Question 3 (15 Marks) (Center Manifold) Consider the system of differential equations below:

$$
\begin{array}{rcl}\n\dot{x}_1 &=& -x_2 + x_1 y, \\
\dot{x}_2 &=& x_1 + x_2 y, \\
\dot{y} &=& -y - x_1^2 - x_2^2 + y^2.\n\end{array} \tag{8}
$$

- (a) By studying the system in Equation(8) above, show that there is a local center manifold of $(x_1, x_2, y) = 0$ that can be written as a graph $y = h(x_1, x_2)$ for $|x_1| < \delta$, and $|x_2| < \delta$ for a small $\delta > 0$. (4 Marks)
- (b) By using an appropriate Taylor series approximation to $h(x_1, x_2)$, about the origin, determine the equations governing the flow on the center manifold. (4 Marks)
- (c) By expressing the governing equations determined in (b) above in polar coordinates, sketch the phase portrait for the system (8) near the origin. (5 Marks)
- (d) Is the origin stable or unstable? State your reason(s) for the choice of your answer. (2 Marks)

Question 4 (15 Marks) (Synchronization of fully coupled systems) Consider the following system

$$
\begin{array}{rcl}\n\dot{x} & = & f(x, y) \\
\dot{y} & = & g(x, y),\n\end{array} \n\tag{9}
$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Suppose the system is dissipative, then there exists a global attractor A. The system (9) is synchronized for y with respect to x, if there exists \mathcal{C}^1 map $H: \mathbb{R}^n \to \mathbb{R}^m$ such that the graph of H, denoted by $graph(H)$, is invariant and globally attracting.

- (a) What does the statement " $graph(H)$, is invariant and globally attracting" mean? (2) Marks) What is the map H in case $m = n$ in (9); that is, mutual synchronization? (1) Mark)
- (b) Suppose, for (9), there exist an invariant manifold $M = graph(H)$. Using the generalized Lyapunov exponents clearly explain how you would investigate the robustness of this manifold. (6 Marks)

(c) Let

$$
\dot{x} = f(x), \qquad x \in \mathbb{R}^n,\tag{10}
$$

be a dissipative process and A be the attractor. Denote λ_M, λ_m the maximal and minimal Lyapunov exponents over \mathcal{A} . Consider the coupled system

$$
\begin{array}{rcl}\n\dot{x} & = & kI(y-x) + f(x) \\
\dot{y} & = & kI(x-y) + f(y),\n\end{array} \tag{11}
$$

where I in an identity matrix of order n and $k > 0$ is a constant. The diagonal $M = \{(x, y) : x = y\}$ is invariant under (11), and the coupled system is synchronized if M is attracting.

(i) With the change of variables defined thus,

$$
u=\frac{y-x}{2},\quad v=\frac{y+x}{2}.
$$

Find an expression of the system (11) in these coordinates. (2 Marks) (i) Synchronization is equivalent to $\{u = 0\}$ is attracting. Linearize the system obtained in (i) about M; that is, about $u = 0$, $v = v_0(t)$ and investigate the robustness of the manifold M using the generalized lyapunov exponents and λ_M , λ_m . (4 Marks)

Question 5 (15 Marks) (Local Bifurcations of a Vector Field) Consider the following class of feedback control systems

$$
\ddot{x} + \delta \dot{x} + g(x) = -z, \n\dot{z} + \alpha z = \alpha \gamma (x - r),
$$
\n(12)

where x and \dot{x} represent the displacement and the velocity, respectively, of an oscillatory system with nonlinear stiffness $g(x) := x(x^2 - 1)$ and linear damping $\delta \dot{x}$ subject to negative control z. The controller has first-order dynamics with time constant $\frac{1}{\alpha}$ and gain γ . A constant or time-varying bias r can be applied. This system provides the simplest possible model for a nonlinear elastic system whose position is controlled by a servomechanism with negligible inertia. Rewriting (12) as a system of first order equations we obtain:

$$
\dot{x} = y,\n\dot{y} = x - x^3 - \delta y - z, \quad (x, y, z) \in \mathbb{R}^3\n\dot{z} = \alpha \gamma x - \alpha z,
$$
\n(13)

where $\delta, \alpha, \gamma > 0$, and $r = 0$.

(a) Show that (13) has fixed points at

$$
(x, y, z) = (0, 0, 0) =: E_0,
$$

and

$$
(x, y, z) = (\pm \sqrt{1 - \gamma}, 0, \pm \gamma \sqrt{1 - \gamma}) =: E_{\pm}, \quad (\gamma < 1).
$$
 (2 Marks)

(b) Linearize about these three fixed points and derive the expressions for γ , shown below, so that (13) has the following **bifurcation surfaces** in (α, δ, γ) space. (i) For

$$
\gamma = 1,
$$

one eigenvalue is zero for E_0 . (2 Marks)

(ii) For

$$
\gamma = \frac{\delta}{\alpha}(\alpha^2 + \alpha \delta - 1), \quad \gamma > 1,
$$

a pair of eigenvalues is pure imaginary for E_0 . (2 Marks) (iii) For

$$
\gamma = \frac{\delta}{\alpha + 3\delta} (\alpha^2 + \alpha \delta + 2), \quad 0 < \gamma < 1,
$$

a pair of eigenvalues is pure imaginary for E_{\pm} . (3 Marks)

(c) Show that these three surfaces meet on the curve

$$
\gamma = 1, \ \delta = \frac{1}{\alpha},
$$

where there is a double-zero eigenvalue with the third eigenvalue being

$$
\frac{-(1+\alpha^2)}{\alpha}.
$$
 (2Marks)

(d) Fix $\alpha > 0$. Briefly describe how one can go about studying the bifurcations from the double-zero eigenvalue in (δ, γ) plane. (You are expected to mention, the normal form, center manifold, the codimension of the fixed point, universal unfoldings among other tools for studying nonhyperbolic fixed points). (4 Marks)

Question 5 (15 Marks) (Invariant Manifolds) Consider an autonomous system of ordinary differential equations in n -dimensional Euclidean space

$$
\dot{x} = f(x), \quad f \in \mathcal{C}^r(U, \mathbb{R}^n),\tag{14}
$$

where U is an open set in \mathbb{R}^n . Let $\bar{M} \subset \mathbb{R}^n$ be a compact overflowing invariant manifold of this system and let $\varphi_t(x)$ denote the flow generated by Equation (14).

- (a) Explain what we mean when one says that M is a normally hyperbolic invariant manifold for $\varphi_t(x)$. (4 Marks)
- (b) State clearly what the generalized Lyapunov-type numbers for Equation(14) are.(4 Marks)
- (c) By use of the Lyapunov-type numbers, state the conditions necessary for the manifold M to be stable and persist under small perturbations of the vector field in $Equation(14)$ (2 Marks)

(d) Consider the vector field given by:

$$
\dot{x} = Ax + f(x, y), \n\dot{y} = By + g(x, y) \qquad (x, y) \in \mathbb{R}^u \times \mathbb{R}^s,
$$
\n(15)

where $f(0,0) = g(0,0) = Df(0,0) = Dg(0,0) = (0,0)$. A and B are constant matrices and we denote the eigenvalues of A and B by $\lambda_1, \lambda_2, \ldots, \lambda_u$ and $\mu_1, \mu_2, \ldots, \mu_s$ respectively. Furthermore assume that

$$
Re\lambda_1 \ge Re\lambda_2 \ge \cdots \ge Re\lambda_u > 0 > Re\mu_1 \ge Re\mu_2 \ge \cdots \ge Re\mu_s.
$$

- (i) Find the overflowing invariant manifold M for the linearized system associated with the vector field (15) (1 Mark)
- (ii) Determine the generalized Lyapunov-type numbers for the flow defined on the manifold M . (2 Marks)
- (iii) Based on the type numbers in (ii) and for x, y small in (15), what is the relationship between the manifold of the linearized system, M , and that of (15) ? (2 Marks)