

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 1208-1
COURSE TITLE: ANALYTICAL CHEMISTRY I

DATE: 18TH APRIL, 2023 TIME: 2:30 – 4:30 PM

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions in section **B**
- 2. No writing on the Question paper
- 3. Use of mobile phone in the exam room is prohibited

RAM values

Ag = 108, Br = 80, Rb = 85, N = 14, Fe = 55.8, S = 32.0 and O = 16

QUESTION ONE [30 MARKS]

a) Define the following terms as used in analytical chemistry;

i. Titrimetric analysis [1 mark]ii. Molality [1 mark]

iii. Dimensional analysis [1 mark]

iv. Common ion effect [1 mark]

v. Blank [1 mark]

b) Why is it important to elucidate the limiting reagent of a reaction? [3 marks]

c) A reaction container holds 6.8 g of P₄ and 6.8 g of O₂. The following reaction occurs:

 $P_4 + O_2 \rightarrow P_4O_6$. If enough oxygen is available then the P_4O_6 reacts further:

$$P_4O_6 + O_2 \rightarrow P_4O_{10}$$
. (P=31, O=16)

a. What is the limiting reagent for the formation of P_4O_{10} ?

[1 mark]

b. What mass of P_4O_{10} is produced?

[2 marks]

d) Commercial HNO₃ acid is 68%^w/_w and it has a specific gravity of 1.39g/ml. Find the formal concentration of this acid. [3 marks]

e) The diameter of a silver atom is 43Å. Assuming the atom has a spherical shape, find its volume and express your answer in SI units. [3 marks]

f) Will a precipitate of $CaSO_4$ form in a solution if the Ca^{2+} concentration is 0.0025 M and the SO_4^- concentration is 0.030 M? For $CaSO_4$, $K_{sp} = 2.4 \times 10^{-5}$. [3 marks]

g) A solution of acetic acid, CH₃COOH is made by dissolving 13g of the powder in 150ml distilled water. The mixture has a density of 1.8 g/ml. Use the above information to calculate its concentration in;

i. mol/litre [1 mark]

ii. grams/litre [1 mark]

iii. molality [1 mark]

iv. normality [1 mark]

v. concentration by percent [1 mark]

h) State two application of the common ion effect [2 marks]

i) 1.5g of solid silver bromide was reacted with 12.5 M rubidium nitrate solution.

Calculate the volume of solution used [3 marks]

QUESTION TWO [10 MARKS]

- a) What do you understand by the term;
 - i) gravimetric analysis

[1 mark]

ii) wet chemistry analysis

[1 mark]

b) A rock sample is to be assayed for its tin content by an oxidation-reduction titration with $I_3^-(aq)$. A 10.00 g sample of the rock is crushed, dissolved in sulfuric acid, and passed over a reducing agent so that all the tin is in the form Sn^{2+} . The $Sn^{2+}(aq)$ is completely oxidized by 34.60 mL of a 0.5560 M solution of NaI₃. The balanced equation for the reaction is

$$I_3^-(aq) + Sn^{2+}(aq) ---> Sn^{4+}(aq) + 3I^-(aq)$$

i) Calculate the amount of tin in the sample and its mass percentage in the rock

[6 marks]

ii) State two possible sources of error in this analysis

[2 marks]

QUESTION THREE

[10 MARKS]

a) Differentiate between random and systemic errors

[1 mark]

b) Describe the following methods used to correct errors;

i. Validation

[1 mark]

ii. Calibration

[1 mark]

iii. Standardization

[1 mark]

c) State any two methods used to correct human errors

[1 mark]

- d) Calculate the solubility product constant for SrF_2 given the molar concentration of the saturated solution is $5.6 \times 10^{-4} M$ [2 marks]
- e) During an analysis, 1.7011 g of an impure rock sample suspected to contain silver was reacted with an acid. The mixture was precipitated out and 0.9805 g of AgCl was obtained. What is the percentage by mass of silver in the sample? [3 marks]

QUESTION FOUR [10 MARKS]

a) Define the following terms as used in titrimetry;

i. Titrand [1 mark]

ii. Titrant [1 mark]

iii. Analyte [1 mark]

- b) Lawnsand contains 40% FeSO₄.(NH₄)₂SO₄.6H₂O (Mohr's salt). 3.5g of lawnsand was dissolved using 40ml distilled water and transferred to a 100ml volumetric flask then filled to the mark. 25ml of the solution was then transferred into a clean elrnemeyer flask. An unknown amount of potassium permanganate was standardized using this solution. The average titre was found to be 10.00ml.
 - i) What is a standard solution?

[1 mark]

- ii) How many grams of Mohr's salt (Ferrous ammonium sulphate) are in the lawn sand? [1 mark]
- iii) Find the number of moles in the 100ml volumetric flask and conical flask

[2 marks]

iv) The standardization reaction proceeds as shown in the reaction below;

$$5Fe^{2+} + 8H^{+} + MnO_{4} \longrightarrow 5Fe^{3+} + 4H_{2}O + Mn^{2+}$$

Find the concentration of potassium permanganate solution.

[3 marks]

QUESTION FIVE

[10 MARKS]

- a) The amount of $Fe^{2+}(aq)$ in an $FeSO_4(aq)$ solution can be determined by titration with a solution containing a known concentration of $Ce^{4+}(aq)$. The determination is based on the reaction: $Fe^{2+}(aq) + Ce^{4+}(aq) ---> Fe^{3+}(aq) + Ce^{3+}(aq)$ Given that it requires 37.50 mL of 0.09650 M $Ce^{4+}(aq)$ to oxidize the $Fe^{2+}(aq)$ in a 35.00 mL sample to $Fe^{3+}(aq)$, calculate the molarity of $Fe^{2+}(aq)$ and the number of milligrams of iron in the sample. [5 marks]
- **b)** The molar solubility of PbBr₂ is $2.17 \times 10^{-3} \text{ M}$ at a certain temperature. Calculate K_{sp} for PbBr₂. [3 marks]
- c) What is the normality of a 0.5 M lead chloride solution? [2 marks]