

1

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023

SCHOOL OF BUSINESS AND ECONOMICS

BACHELOR OF SCIENCE ECONOMICS AND STATISTICS

FOURTH YEAR SECOND SEMESTER

COURSE CODE: ECS 4205

COURSE TITLE: NUMERICAL ANALYSIS METHODS

DATE: APRIL 2023

TIME:

INSTRUCTIONS TO CANDIDATES

- Question ONE is Compulsory
- Answer any other TWO questions from the remaining 4 Questions.

2

QUESTION ONE (30 MARKS)

- a] Prove the operator relations $\delta \mu = \frac{\Delta + \nabla}{2}$ where the numerical symbols have their usual meaning (5 marks)
- b] Obtain a relation of the form $y = ab^x$ for given data using the method of least squares.

x	2	3	4	5	6	(5 marks)
у	8.3	15.4	33.1	65.2	127.4	(5 1141 K5)

- c] Find the root of the equation $x^3 3x 5 = 0$ using Newton-Raphson method. With $x_0 = 2$ giving your answer to three decimal places (5 marks)
- d] Use Lagrange interpolation formula to find a unique polynomial of degree two or less such that f(x) = 168,192,336 at x = 1,7,15 respectively, hence evaluate f(10).
- e] The population of a town in the decimal census was given below

Year	1921	1931	1941	1951	1961
Population	10.06	39.65	58 81	77 21	9/ 61
inthousands	17.90	57.05	50.01	11.21	94.01

Estimate the population for the year 1963

f] Evaluate $\int_{1}^{2} \frac{dx}{1+r}$ by trapezoidal rule considering eight sub-intervals

(5 marks)

QUESTION TWO (20 MARKS)

- a] Show that the equation $x^3 x 11 = 0$ has a root between 2 and 3. Use bisection method to get this root (give your answer to 3 decimal places). (10 marks)
- b] The following table gives corresponding values of x and y. By constructing the

difference table, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when x = 1.1

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	(10 marks)
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031	

(5 marks)

(5 marks)

QUESTION THREE (20 MARKS)

a] Use Gauss-Seidel iteration method to solve the linear systems of equations:

5x + 2y + z = 12x + 4y + 2z = 15x + 2y + 5z = 20

carry out four iterations correct to 4 significant figures

b] The following table gives the population of a town during the last six censuses. Estimate the increase in the population during the period from 1955 to 1958.

Year: x	1911	1921	1931	1941	1951	1961
Population: y (thousands)	12	15	20	27	39	52

QUESTION FOUR (20 MARKS)

a] Use Lagrange's interpolation formula to find the value of f(2) given that:

x	0	1	3	4
f(x)	5	6	50	105

b] Fit a second-degree polynomial to the following data by the method of least squares:

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

QUESTIONS FIVE (20 MARKS)

a] Use Jacobi's iteration method to solve the linear system of equations given below:

$$5x - y + 3z = 10$$
$$3x + 6y = 18$$
$$x + y + 5z = -10$$

carry out five iterations correct to 3 decimal places with (3,0,-2) as initial

approximation to the solution

b] Evaluate
$$\int_{4}^{5.2} \ln x \, dx$$
 using Simpsons $\frac{3}{8}$ rule with 6 sub-intervals (12 marks)

(8 marks)

(12 marks)

(10 marks)

(10 marks)

(8 marks)