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Abstract
Synanthropic bats live in close proximity to humans and domestic animals, creating 
opportunities for potential pathogen spillover. We explored environmental correlates 
of	occurrence	for	a	widely	distributed	synanthropic	African	bat,	Mops pumilus—a spe-
cies	associated	with	potential	zoonotic	viruses—and estimated current and future en-
vironmental	suitability	in	the	Taita	Hills	region	and	surrounding	plains	in	Taita–Taveta	
County	in	southeast	Kenya.	To	project	future	environmental	suitability,	we	used	four	
Coupled	 Model	 Intercomparison	 Project	 Phase	 6	 general	 circulation	 models	 that	
capture	temperature	and	precipitation	changes	for	East	Africa.	The	models	were	pa-
rameterized	with	empirical	capture	data	of	M. pumilus collected from 2016 to 2023, 
combined with satellite- based vegetation, topographic, and climatic data to identify 
responses to environmental factors. The strongest drivers for current environmental 
suitability for M. pumilus were short distance to rivers, higher precipitation during the 
driest months, sparse vegetation—often related to urban areas—and low yearly tem-
perature variation. To predict current and future areas suitable for M. pumilus, we cre-
ated ensemble niche models, which yielded excellent predictive accuracies. Current 
suitable environments were located southward from the central and southern Taita 
Hills	and	surrounding	plains,	overlapping	with	urban	centers	with	the	highest	human	
population	densities	in	the	area.	Future	projections	for	2050	indicated	a	moderate	in-
crease in suitability range in the southern portion of the region and surrounding plains 
in	human-	dominated	areas;	however,	projections	for	2090	showed	a	slight	contraction	
of environmental suitability for M. pumilus, potentially due to the negative impact of 
increased	temperatures.	These	results	show	how	environmental	changes	are	likely	to	
impact	the	human	exposure	risk	of	bat-	borne	pathogens	and	could	help	public	health	
officials	develop	strategies	to	prevent	these	risks	in	Taita–Taveta	County,	Kenya,	and	
other	parts	of	Africa.
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1  |  INTRODUC TION

Understanding	 the	 spatial	 overlap	 between	 humans	 and	 wildlife	
across landscapes is necessary for developing strategies that pre-
vent	human	exposure	to	wildlife-	borne	zoonotic	pathogens.	 In	an-
thropogenic spaces, synanthropic wildlife species live alongside 
humans	and	their	domestic	animals.	Urban	wildlife	poses	a	greater	
risk	of	human	exposure	to	pathogens	because	of	high	contact	rates	
with	humans	and	because	of	the	variety	of	zoonotic	pathogens	that	
they	harbor	(Albery	et	al.,	2022;	Bradley	&	Altizer,	2007; Plowright 
et al., 2017).

The	 African	 continent	 has	 the	 world's	 fastest-	growing	 human	
population.	Kenya	ranks	among	the	most	populated	nations	in	Africa	
with a total population of 52.5 million people in 2021, which is pro-
jected	to	double	by	the	end	of	 the	21st	century	 (UN,	2022).	With	
accelerating	 urbanization	 and	 agriculturalization	 to	 accommodate	
this population growth, increasing human interactions with wild-
life	are	likely	(Baker	et	al.,	2022).	Together	with	the	impacts	of	cli-
mate change, developing infrastructure, and human mobility, these 
phenomena	boost	disease	emergence	and	spillover	 risk	across	 the	
landscape.

Bats are a diverse group of mammals that can be found in 
areas	with	varying	degrees	of	urbanization	and	on	all	continents	
inhabited	by	humans	(Simmons	&	Cirranello,	2023).	Many	bat	spe-
cies are synanthropic, with several species continuing to adapt 
to	 and	 exploit	 anthropogenic	 areas	 (Schoeman,	 2016).	 The	 use	
of urban areas brings bats and humans into shared spaces where 
human–bat	contact	can	occur	(Russo	&	Ancillotto,	2015).	Bats	are	
reservoirs	 for	 emerging	 pathogens	 (Olival	 et	 al.,	 2017),	 includ-
ing	 highly	 pathogenic	 viruses	 from	 families	 like	 Coronaviridae	
(Lane	 et	 al.,	 2022; Tong et al., 2009),	 Adenoviridae	 (Waruhiu	
et al., 2017),	Paramyxoviridae	 (Lane	et	al.,	2022),	and	Filoviridae	
(Amman	et	 al.,	2020; Forbes et al., 2019; Goldstein et al., 2018; 
Kareinen et al., 2020).	Bats	are	additionally	known	to	be	infected	
by highly pathogenic species of Togaviridae and Flaviviridae 
(Calisher	 et	 al.,	 2006; Kading et al., 2022; Karan et al., 2019; 
Waruhiu et al., 2017).	Because	of	their	proximity	to	humans	and	
their ability to host a diversity of pathogens, some synanthropic 
bat	species	may	pose	significant	risks	to	human	health,	and	inter-
vention strategies are needed to understand the potential distri-
bution of these species across landscapes.

The insectivorous little free- tailed bat, Mops pumilus	 (family	
Molossidae)	 is	 widely	 distributed	 across	 the	 African	 continent;	
the	geographical	 range	of	 the	species	extends	 from	the	Horn	of	
Africa	(Ethiopia,	Djibouti,	Eritrea)	to	the	Middle	East	(Yemen	and	
Saudi	Arabia),	including	areas	identified	as	hotspots	for	emerging	
infectious	diseases	(Bett	et	al.,	2020).	The	species	is	found	in	a	di-
versity of environments, including woodland, rainforest, bushland, 

thicket,	and	agricultural	areas	but	also	in	urban	and	suburban	areas	
(Schoeman,	 2016;	 Wilson	 &	 Mittermeier,	 2019).	 Mops pumilus 
roosts communally in groups that can number from a few individ-
uals to several thousand, often sharing roosts in human dwellings 
with	several	other	synanthropic	bat	species	(Jackson	et	al.,	2024; 
Wilson	&	Mittermeier,	2019).	Despite	the	wide	geographical	range	
of M. pumilus	in	Africa	and	its	frequent	interactions	with	humans	
and	 domestic	 animals	 (Jackson	 et	 al.,	 2024; Lunn et al., 2023),	
environmental factors that drive its environmental suitability 
have not been previously studied. Bat distribution is influenced 
by a variety of environmental and behavioral factors that im-
pact their movement across the landscape. For example, precip-
itation and temperature directly impact environmental suitability 
for bats via their effects on flight activity and thermoregulation 
(Voigt	et	al.,	2011).	Vegetation	density	and	structure,	along	with	
water	presence,	can	regulate	prey	biomass	(Ober	&	Hayes,	2008; 
Wolbert et al., 2014).	Furthermore,	while	short-	term	weather	con-
ditions are important predictors of bat environmental suitability, 
long- term climatic conditions can explain local variations in bat 
distribution	(Erickson	&	West,	2002).

Species distribution modeling can be used to identify land-
scape areas conducive to a particular wildlife species along with 
the elements that have the greatest impact on the environmental 
niche	 for	 that	 species	 (Guisan	&	Zimmermann,	2000).	When	ap-
plied	 to	a	potential	 zoonotic	pathogen	host	 like	M. pumilus, spe-
cies	 distribution	modeling	 can	 inform	human	 exposure	 risk	 over	
heterogeneous	landscapes.	In	this	study,	we	aim	to	(1)	identify	the	
most influential environmental variables driving the spatial occur-
rence of M. pumilus;	(2)	use	this	information	to	project	the	environ-
mental suitability for M. pumilus	across	the	county;	and	(3)	project	
future	 distribution	 across	 the	 county	 under	 four	 climate	 projec-
tions for 2050 and 2090. This pre- emptive study creates informa-
tion that is critical for identifying areas of high overlap between 
this common synanthropic bat species and humans, which may 
represent	regions	with	a	high	risk	of	human	exposure	to	emerging	
zoonotic	pathogens.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Our	study	was	conducted	in	the	Taita	Hills	and	surrounding	plains	
in	Taita–Taveta	County,	 southeast	Kenya	 (Figure 1a,b).	 This	 area	
is	 recognized	 as	 a	 hotspot	 for	 emerging	 zoonotic	 disease	 risk	
(Allen	 et	 al.,	 2017).	 Previous	 work	 has	 identified	 coronaviruses	
in M. pumilus	 bats	 in	 the	 area	 (Waruhiu	 et	 al.,	2017).	 The	 study	
area	covers	an	approximate	area	of	2700 km2, including the hills 
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(1000 km2)	and	surrounding	plains.	Taita–Taveta	County	is	divided	
into	 20	 administrative	 districts	 (*wards),	 15	 of	 which	 extend	 to	
our	 study	 area.	 This	 area	 is	 characterized	by	 high	wildlife	 diver-
sity and habitat heterogeneity; the hills have cloud forest from 
1400	 to	 2200 m	 surrounded	 by	 lower-	elevation	 (400–1400 m)	
grassland,	woodland,	semiarid	shrubland,	and	dry	savanna	(Abera	
et al., 2022; Platts et al., 2011).	The	climate	 is	 semiarid,	with	an	
average	 annual	 temperature	 of	 23°C	 (Autio	 et	 al.,	2021; Ogallo 
et al., 2019).	Typically,	there	are	two	rainy	seasons—March	to	May/
June	and	October	 to	December—with	 an	 average	 annual	 rainfall	
of	 150–600 mm	 in	 the	 lowlands	 and	 800–1200 mm	 in	 the	 high-
lands	(Autio	et	al.,	2021; Ogallo et al., 2019).	Urbanization	has	dra-
matically	increased	during	recent	decades	in	Taita–Taveta	County,	
with a 700% increase in developed landcover during the past dec-
ade	and	a	 steadily	 increasing	human	population	 (Kenya	National	
Bureau of Statistics, 2019; Nyongesa et al., 2022).	Human–wildlife	
interactions have increased because of higher rates of environ-
mental loss and forest degradation brought on by altered agricul-
tural activity, accelerated climate change, and a rapidly expanding 
human	population	(Maeda,	2012;	Munyao	et	al.,	2020).

2.2  |  Bat occurrence data

Occurrence data included a total of 84 presence locations for M. 
pumilus	recorded	between	2016	and	2023.	Most	M. pumilus were 
captured	 from	 houses	 (N = 79),	 with	 a	 few	 captured	 flying	 over	
waterbodies	 (N = 5).	 For	 bat	 trapping,	 we	 used	 single-	,	 double-	,	
and triple- high mist nets and hand nets in buildings and at natu-
ral	flyways	over	water	sources	to	capture	bats	(Lunn	et	al.,	2023).	
Buildings that were used by bats were identified through 
house-	to-	house	 surveys	 and	 community	 conversations	 (Jackson	
et al., 2024).	 Captured	 bats	 were	 identified	 to	 species	 level	 in	

the	 field	using	existing	keys	 for	bats	 in	East	Africa	 (Patterson	&	
Webala, 2012).

2.3  |  Predictors of bat environmental suitability

We incorporated several environmental predictors into models 
based	 on	 their	 known	 or	 suspected	 influence	 on	 bat	 distribu-
tions	 (Cooper-	Bohannon	 et	 al.,	 2016; Koch et al., 2020; Pigott 
et al., 2014;	 Reed	 Hranac	 et	 al.,	 2019).	 Environmental	 data	 for	
the study area included precipitation, temperature, topographic, 
vegetation, and distance- based variables obtained from satellite 
imagery,	GIS	layers,	and	interpolated	data	(Table S1).	As	some	en-
vironmental	data	had	a	higher	resolution	(20 m)	than	the	other	lay-
ers,	we	downscaled	bioclimatic	data	(~1000 m)	acquired	from	the	
WorldClim	database	(version	2.1;	Fick	&	Hijmans,	2017).	We	used	
geographic	weighted	regression	for	grid	downscaling	in	QGIS	(ver-
sion	3.28.4)	with	the	Saga	Next	Generation	plug-	in	to	downscale	
(100 m	resolution)	the	environmental	data	by	using	the	digital	el-
evation model. We also incorporated 19 bioclimatic variables into 
the models to compare current and future environmental suitabil-
ity for M. pumilus.

To predict future environmental suitability for M. pumilus, we 
used	the	following	four	CMIP6	general	circulation	models	 (GCMs):	
EC-	Earth3-	Veg,	 HadGEM3-	GC31-	LL,	 IPSL-	CM6A-	LR,	 and	 MRI-	
ESM2-	0.	We	selected	these	GCMs,	as	they	vary	in	climate	sensitivity	
(Lange,	2021)	and	can	capture	extreme	seasonal	precipitation	indi-
ces,	particularly	in	East	Africa	(Akinsanola	et	al.,	2021).	In	conjunc-
tion	with	each	GCM	scenario,	we	used	two	shared	socioeconomic	
pathways	 (SSPs):	 2.45	 (medium	 change)	 and	 5.85	 (high	 change).	
The SSP2.45 scenario represents the medium pathway for future 
greenhouse gas emissions, with a temperature rise of 3°C. It follows 
historical growth trends in development and reduced fossil- fuel 

F I G U R E  1 Study	area	in	the	Taita	Hills	and	surrounding	plains	in	Taita–Taveta	County,	southeast	Kenya	(a,	b).	Map	indicating	Mops pumilus 
occurrence	data	with	81	presence	points	across	the	study	area	and	different	vegetation	types	(b).
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dependence, global population growth is moderate, and environ-
mental	 systems	 are	 facing	 certain	 degradation	 (Riahi	 et	 al.,	2017; 
Tebaldi et al., 2021).	 The	 SSP5.85	 scenario	 represents	 the	 upper	
boundary of future predictions, with a temperature rise of 5°C by 
2100.	It	is	based	on	socioeconomic	progress,	reduced	global	inequal-
ity, a growing world economy, strong reliance on fossil fuels, and 
intensive	development	and	energy	consumption	(Riahi	et	al.,	2017; 
Tebaldi et al., 2021).	Lastly,	 future	environmental	suitability	for	M. 
pumilus	was	predicted	based	on	bioclimatic	data	for	2041–2060	and	
2081–2100	using	 the	mean	 value	of	 the	 climate	 variable	 for	 each	
period	(2050	and	2090).

2.4  |  Data preparation and analysis

To reduce spatial autocorrelation, bat occurrence data were spatially 
thinned	using	R	package	Wallace	(Kass	et	al.,	2018)	with	the	spThin ap-
proach. With spatial autocorrelation, data or residuals are correlated 
with	 themselves	 rather	 than	 being	 independent	 (Drew	et	 al.,	2011)	
and	may	 inflate	 the	 effective	 sample	 size	 and	 bias	 parameter	 esti-
mates. For M. pumilus observation data, we used a spatial thinning 
buffer	of	100 m	to	incorporate	the	highest	possible	number	of	pres-
ences.	After	data	thinning,	M. pumilus data consisted of 81 presence 
points	(Figure 1b).	To	model	the	environmental	niche,	we	generated	
three pseudoabsence points per presence point via the random strat-
egy	 (N = 243)	 across	 10	 replication	 sets,	 as	 recommended	 (Barbet-	
Massin	et	al.,	2012; Thuiller et al., 2023).	In	the	final	models,	presence	
and	 pseudoabsence	 points	 were	 equally	 weighted	 (Barbet-	Massin	
et al., 2012).	We	used	the	biomod2	platform	in	R	(version	3.4.6;	Thuiller	
et al., 2023)	to	create	species	distribution	models	(SDMs)	to	identify	
areas with suitable environmental conditions for M. pumilus.

All	geospatial	datasets,	including	environmental	and	bioclimatic	
data,	were	 processed	 in	 Esri	 ArcGIS	 (version	 10.8;	 Environmental	
Systems	Research	 Institute	 (ESRI),	2023)	 or	QGIS	 (version	 3.28.4)	
and were set to the same spatial extent, geographic coordinate 
system	 (Arc	 1960	 UTM	 Zone	 37S,	 EPSG:21037),	 and	 resolution	
(100 × 100 m).	 Multicollinearity	 of	 the	 variables	 was	 investigated	
using	variance	inflation	factors	(VIFs),	as	implemented	in	R	package	
usdm	 (Belsley	et	al.,	1980; Naimi, 2017).	Correlated	variables	were	
excluded in a stepwise procedure using a commonly applied thresh-
old	value	of	10	(Chatterjee	&	Hadi,	2013; Sulaiman et al., 2019);	9	
out of 24 variables were included in the final modeling analysis to 
predict current environmental suitability for M. pumilus	 (Table S1).	
For	current	and	future	projections	including	only	climatic	data,	6	out	
of 19 bioclimatic variables were included in the final analysis after 
reducing	multicollinearity	(Table S1).

The	 following	 eight	 predictive	 modeling	 techniques	 were	
employed	 in	 our	 ensemble	 approach:	 generalized	 linear	 model	
(GLM)	 (McCullagh,	 1989),	 generalized	 additive	 model	 (GAM)	
(Hastie,	1990),	classification	tree	analysis	(CTA)	(Breiman,	1984),	ar-
tificial	neural	networks	(ANN)	(Ripley,	1996),	multivariate	adaptive	
regression	 splines	 (MARS)	 (Friedman,	1991),	 generalized	boosting	
model	(GBM)	(Ridgeway,	1999),	random	forest	(RF)	(Breiman,	2001),	

and	maximum	entropy	(MAXNET)	(Phillips	et	al.,	2017).	Flexible	dis-
criminant	 analysis	 (FDA)	 and	 surface	 range	 envelope	 (SRE)	 were	
excluded	because	of	generally	poor	predictive	performance	 (Elith	
et al., 2006;	 Zhao	&	Gao,	2015).	 The	models	were	 run	 using	 the	
default settings of biomod2	(Thuiller	et	al.,	2023).	We	used	a	cross-	
validation	technique	in	which	the	thinned	dataset	was	divided	into	
two	parts,	one	to	calibrate	the	models	(70%)	and	another	to	eval-
uate	them	(30%)	(Guisan	&	Zimmermann,	2000).	We	repeated	the	
calibration and evaluation sets 10 times for each model and pseu-
doabsence	dataset	(800	model	evaluation	runs	in	total).	To	reduce	
uncertainty	 related	 to	 the	 choice	of	 a	 single	modeling	 technique,	
we built ensemble predictions using the ensemble mean method 
(Araújo	&	New,	2007).	This	approach	produces	the	ensemble	pre-
diction by averaging predictions across the best- performing in-
dividual	 models	 (0.7 < area	 under	 the	 curve,	 AUC < 1.0)	 (Thuiller	
et al., 2023).	 Predictions	 based	 on	 ensemble	 mean	 models	 were	
used as an input for environmental suitability maps of M. pumilus. 
The current suitability distribution result, including only climatic 
data	(Table S1),	was	further	projected	to	predict	the	species'	future	
distributions	 under	 previously	mentioned	GCMs	 (see	 section	2.3 
Predictors	of	Bat	Environmental	Suitability).

2.5  |  Accuracy assessment

Sensitivity	(the	proportion	of	correctly	predicted	presences)	and	spec-
ificity	 (the	 proportion	of	 correctly	 predicted	pseudoabsences)	were	
calculated	to	quantify	omission	errors	(Fielding	&	Bell,	1997).	AUC	and	
true	skill	statistics	(TSS)	(Allouche	et	al.,	2006)	were	used	to	measure	
model ability to distinguish between presence and pseudoabsence 
classes.	AUC	scores	range	from	0	to	1,	with	0.5	being	the	threshold	for	
predictions	better	than	random	(Fielding	&	Bell,	1997),	and >0.7 being 
an	acceptable	threshold	for	predictions	(Morán-	Ordóñez	et	al.,	2017).	
TSS	scores	range	from	−1	to	1,	where	1	indicates	a	perfect	ability	to	
distinguish suitable habitats from unsuitable ones, while values of 
zero	or	less	indicate	a	performance	no	better	than	random	(Allouche	
et al., 2006).	Variable	importance,	referred	to	here	as	the	relative	per-
cent contribution of a predictor to model outputs, was extracted from 
the biomod2 output, with higher values indicating higher influence on 
the	ensemble	mean	model	(Thuiller	et	al.,	2023).	Partial	dependency	
plots were generated showing the average effect of each covariate 
on the overall response. To estimate current and future environmen-
tal suitability for M. pumilus based on climate data, we only present 
variable importance and partial dependence plots for current suitabil-
ity, as these variables mainly followed a similar importance order in 
all	predicted	future	scenarios	 (N = 16).	To	detect	changes	of	suitable	
areas for M. pumilus	between	current	and	future	projections,	we	first	
classified areas as suitable or unsuitable based on threshold values 
that	maximized	sensitivity	and	specificity	in	each	projection.	We	then	
calculated	the	percentage	of	suitable	habitats	for	each	projection	and	
compared them to determine changes between present, 2050, and 
2090	projections.	Suitability	maps	were	first	created	using	R	software	
and	were	afterwards	modified	in	ArcGIS.
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3  |  RESULTS

3.1  |  Model performance

The generated ensemble niche models for estimating current envi-
ronmental suitability for M. pumilus	performed	strongly	(AUC = 0.95	
and	TSS = 0.75;	Table S2).	 The	mean	predictive	performance	of	 all	
16	future	scenarios	was	0.93	based	on	AUC	(range = 0.92–0.94)	and	
0.72	 based	 on	 TSS	 (range = 0.69–0.76).	 Of	 the	 individual	 models	
used	 to	 create	an	ensemble	niche	model,	 the	RF,	GBM,	and	GAM	
models	 had	 the	 strongest	 performance	 (Figure S1).	 The	 ensemble	
mean model identified unsuitable environments better than suitable 
environments	in	the	current	predictions	(sensitivity = 80.3%,	speci-
ficity = 94.7%;	 Table S2).	 For	 future	 predictions,	 mean	 sensitivity	
based	on	AUC	was	83.7%	(range = 76.5–91.4%)	and	specificity	was	
88.3%	(range = 82.1–91.8%).

3.2  |  Predictor contributions

Our models showed that the environmental suitability of M. pumi-
lus was influenced by several environmental and bioclimatic vari-
ables	 (Figures 2 and 3).	The	highest	relative	contributions	were	by	
BIO4 = temperature	seasonality	(29.9%)	followed	by	distance	to	river	
(24.2%),	BIO18 = precipitation	of	warmest	quarter	(9.9%),	normalized	
difference	vegetation	 index,	NDVI	 (8.9%),	BIO14 = precipitation	of	
driest	month	 (8.7%),	 elevation	 (5.8%),	 BIO3 = isothermality	 (5.8%),	
and	wind	speed	(4.0%).	Topographic	wetness	index	(TWI,	2.8%)	was	
the least important predictor among the models.

Locations with relatively low temperature variation within a year 
(1.55–1.66°C),	high	precipitation	during	the	driest	month	(>16 mm),	

low levels of temperature variability within an average month rel-
ative	 to	 the	 year	 (67–68.5%),	 a	 high	 TWI	 (>4),	 sparse	 vegetation	
(0.1 < NDVI < 0.3),	 and	 elevations	 between	 900	 and	 1500 m	 had	
higher environmental suitability for M. pumilus	 (Figure 3).	 Longer	
distance	 to	 rivers	 (>500 m),	 high	precipitation	during	 the	warmest	
quarter	(>160 mm),	and	high	wind	speed	(>1.3 m s−1)	were	negatively	
associated with M. pumilus	suitability	(Figure 3).

3.3  |  Current environmental suitability for 
Mops pumilus

Our models estimate high levels of environmental suitability for M. 
pumilus in current environmental settings across large areas in the 
Taita	Hills	and	surrounding	plains	in	Taita–Taveta	County	(Figure 4).	
Areas	with	highest	suitability	for	M. pumilus were found in 12 of the 
15 wards located in the study area, with highest suitability predicted 
in savanna, grassland, shrubland, and developed low- elevation re-
gions.	Areas	at	elevations	lower	than	750 m	and	greater	than	1500 m	
or areas with minimal development were estimated to have low to 
moderate suitability for M. pumilus.

3.4  |  Future environmental suitability for 
Mops pumilus

Our models predicted changes in the environmental suitability for M. 
pumilus	in	the	Taita	Hills	and	surrounding	plains	by	2050	(Figure 5).	
Increases	 in	 environmental	 suitability	 are	 likely	 across	 the	 study	
area, especially in mid-  to high- elevation areas and in undisturbed 
savanna, shrubland, and woodland in the southern reaches of the 

F I G U R E  2 Relative	contributions	of	environmental	variables	for	estimating	current	environmental	suitability	for	Mops pumilus by the 
ensemble	mean	model.	BIO14,	precipitation	of	the	driest	month;	BIO18,	precipitation	of	the	warmest	quarter;	BIO3,	isothermality;	BIO4,	
temperature	seasonality;	DITORI,	distance	to	river;	NDVI,	normalized	difference	vegetation	index;	TWI,	topographic	wetness	index.
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Taita	Hills	and	surrounding	plains.	Our	models	showed	minimal	con-
traction	(−0.7%)	or	no	contraction	of	environmental	suitability	in	any	
administrative	ward	by	2050.	The	EC-	Earth3-	Veg	and	MRI-	ESM2-	0	
models with SSP2.45 scenarios yielded the largest increases in envi-
ronmental	suitability	(6.3–10.1%)	for	M. pumilus by 2050.

In	 contrast,	 the	 considered	 GCMs,	 excluding	 HadGEM3-	
GC31-	LL,	 predicted	 a	 slightly	 contracting	 distribution	 (−0.5–5.0%)	
for M. pumilus in all administrative wards between 2050 and 2090 
(Figures 5 and 6).	 The	 EC-	Earth3-	Veg,	 IPSL-	CM6A-	LR,	 and	 MRI-	
ESM2-	0	models,	with	low	and	medium	change	scenarios,	predicted	
suitability in low- elevation savanna, shrubland, and woodland to de-
crease substantially, with high environmental suitability for M. pumi-
lus largely concentrated in mid- to high- elevation areas.

4  |  DISCUSSION

Here,	for	the	first	time,	we	developed	SDMs	to	determine	the	driv-
ers for environmental suitability for M. pumilus, to identify hotspot 

areas and to model changes in suitable habitats under future scenar-
ios.	Our	projections	indicate	that	M. pumilus inhabits large portions 
of	 the	 Taita	 Hills	 and	 surrounding	 plains,	 including	 hotspot	 areas	
of suitability coinciding with human development and agriculture. 
Future predictions demonstrate how these areas will change in the 
study	area—first,	 the	 localized	 range	of	M. pumilus will increase in 
the short term, by 2050, but thereafter it will decrease and become 
more	fragmented	when	the	species'	range	contracts—as	expected	in	
the long term.

Our study shows that the current environmental suitability for 
M. pumilus was associated with temperature, precipitation, and 
topographic variables, vegetation cover, and waterway presence, 
which	is	mainly	congruent	with	studies	of	other	bat	species	(Koch	
et al., 2020; Lee et al., 2012).	The	 results	 indicate	 that	M. pumi-
lus	 is	sensitive	 to	changes	 in	 temperature	seasonality.	High	tem-
perature variation throughout the year has been found to impact 
the	basal	metabolic	rate	of	other	bat	species	(Downs	et	al.,	2012).	
Additionally,	extremely	high	or	low	temperatures	over	the	course	
of a year may affect the physiological tolerance of the species, 

F I G U R E  3 Partial	dependency	plots	for	estimating	current	environmental	suitability	for	Mops pumilus produced by the ensemble mean 
model.	BIO14,	precipitation	of	the	driest	month;	BIO18,	precipitation	of	the	warmest	quarter;	BIO3,	isothermality;	BIO4,	temperature	
seasonality;	NDVI,	normalized	difference	vegetation	index;	TWI,	topographic	wetness	index.
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for example by lowering net primary productivity and thereby re-
ducing	the	availability	of	insect	prey	(Schloss	et	al.,	1999; Vinson 
&	Hawkins,	2003).	Our	 findings	 also	demonstrate	 that	 locations	
with shorter distances to rivers and higher precipitation during the 
driest month were associated with higher suitability for M. pum-
ilus.	Water	 is	 a	 limiting	 resource	 in	 semiarid	climates	 like	 that	of	
southeast Kenya, and bats may use waterbodies, such as rivers, 
for	hydration	(Katunzi	et	al.,	2021; Rainho & Palmeirim, 2011).	The	
presence of waterbodies and higher precipitation also increase 
insect	 biomass,	 which	 is	 crucial	 for	 bat	 reproduction	 (Nurul-	Ain	
et al., 2017).	Our	findings	are	also	consistent	with	results	from	pre-
vious	studies	in	other	African	countries	that	identified	temperature	
and	precipitation	variables	as	key	drivers	of	bat	habitat	 suitabil-
ity	 for	 other	 bat	 species	 and	 families	 (Arumoogum	 et	 al.,	2019; 
Cooper- Bohannon et al., 2016; Schoeman et al., 2013).	However,	
excessively high precipitation levels increase their flight metabo-
lism,	which	in	turn	decreases	their	body	mass	(Davy	et	al.,	2022).	
Additionally,	locations	with	high	suitability	for	M. pumilus were as-
sociated with sparse vegetation. This is evident, as synanthropic 
bats roost in buildings, particularly in urban environments with 
sparse vegetation cover.

The	projected	suitability	for	M. pumilus was highest at low-  to 
mid-	elevation	 areas	 just	 south	 of	 the	 highest	 mountains	 of	 the	
Taita	Hills.	These	areas	are	dominated	by	moderate	rates	of	human	
development	 and	 agriculture	 containing	 several	 of	 the	 county's	
urban	centers	(Ojwang’	et	al.,	2017).	Human	population	growth	in	
Taita–Taveta	County	is	steadily	increasing	(Kenya	National	Bureau	
of Statistics, 2019),	 and	 rapid	 urbanization	 creates	 more	 build-
ings,	 that	 is,	 roost	 sites	 for	 bats.	 Although	 high	 suitability	 areas	
for M. pumilus are mostly located in low-  to mid- elevation areas, 
environmental	conditions	in	higher-	elevation	areas	in	Taita–Taveta	
County may not be a limiting factor for the species, as our findings 
indicate that the suitability for M. pumilus remains high at eleva-
tions	greater	than	1500 m.	This	finding	is	somewhat	contradictory	
to earlier studies in which M. pumilus has not been captured at 
elevations	above	1400 m	(Benda	et	al.,	2019;	Katunzi	et	al.,	2021; 
Lane et al., 2022).

Future predictions show that human- dominated areas will con-
tinue to be acceptable for use by this synanthropic bat species in 
the near future, although this trend varies with time. The imme-
diate	projected	range	expansion	may	be	correlated	with	predicted	
increases in temperatures and precipitation, and the plasticity 

F I G U R E  4 Current	environmental	suitability	for	Mops pumilus	presented	by	administrative	ward	in	the	study	area	in	Taita–Taveta	County	
by the ensemble mean method over several modeling methods.
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F I G U R E  5 Future	environmental	suitability	for	Mops pumilus	in	the	Taita	Hills	and	surrounding	plains	projected	for	2050	using	four	
general	circulation	models	(GCMs)	and	two	shared	socioeconomic	pathways	(SSPs)	based	on	the	ensemble	mean	method	over	several	
modeling	methods.	The	percentage	change	in	suitable	habitat	between	the	present	and	future	(2050)	is	indicated	in	the	lower	right	corner	of	
each panel.
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F I G U R E  6 Future	environmental	suitability	for	Mops pumilus	in	the	Taita	Hills	and	surrounding	plains	projected	for	2090	using	four	
general	circulation	models	(GCMs)	and	two	shared	socioeconomic	pathways	(SSPs)	based	on	the	ensemble	mean	method	over	several	
modeling methods. The percentage change in suitable habitat between 2050 and 2090 is indicated in the lower right corner of each panel.
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of the thermal tolerance of M. pumilus may be beneficial as the 
climate	 changes	 in	 this	 region	 (Marsden	 et	 al.,	 2022).	 However,	
subsequent	 prediction	 scenarios	 for	 2090	 indicate	 a	 slight	 con-
traction of the suitability of the southern study area, where the 
environmental suitability for M. pumilus was previously highest. 
In our study, suitability for M. pumilus was negatively associated 
with temperature extremes, suggesting that the species could 
probably be impacted by global warming, as its suitable habitats 
would	be	reduced.	At	1.5°C,	2°C,	and	3°C	of	global	warming	above	
preindustrial	 levels,	mean	annual	temperatures	in	East	Africa	are	
estimated	to	average	0.6–2.1°C	warmer	than	the	1994–2005	av-
erage	(IPCC,	2023).	This	temperature	increase	may	be	too	extreme	
for M. pumilus to tolerate physiologically and may have negative 
impacts	 on	 the	 species'	 insect	 prey	 (Erickson	 &	 West,	 2002).	
Therefore,	the	risk	of	human	contact	with	M. pumilus may increase 
in	the	near	future	but	will	likely	decrease	as	the	severity	of	climate	
change increases.

While our models had strong predictive performance, there are 
some	limitations	to	the	interpretation	of	our	data.	Although	CMIP6	
models depict improved performance in the climate simulations 
relative	to	earlier	CMIP5	models	(Ayugi	et	al.,	2021),	any	long-	term	
future	projections	are	always	subject	to	a	range	of	assumptions	and	
limitations. We have endeavored to address this by using ensem-
ble	mean	models,	four	GCMs	known	to	capture	specific	features	of	
East	African	climate	with	two	SSPs	and	800	suitability	model	runs	
(Akinsanola	et	al.,	2021).	The	future	projections	for	M. pumilus suit-
ability are meant to show average trends and should not be under-
stood	as	being	predictive	for	specific	years.	High	model	uncertainty	
in the southwestern, southeastern, and central parts of the study 
area may be due to sampling bias, as sampling focused on building 
roosts and could not be conducted in several of the protected areas.

Here,	we	 investigated	the	drivers	of	occurrence	for	M. pumilus 
and identified environmentally suitable habitats for the species 
under current and future scenarios. We studied these aspects in the 
Taita	Hills	and	surrounding	plains	in	southeastern	Kenya,	but	the	re-
sults	are	transferable	to	other	regions	in	Africa	that	are	not	far	from	
their	geographical	distance	or	from	the	core	of	a	species'	range	and	
to	 regions	with	 topographical	 variation	 (Rousseau	&	Betts,	2022).	
Here,	we	used	high-	quality	occurrence	data	of	M. pumilus instead of 
aggregated observations from big data repositories that may often 
be	prone	 to	spatial	bias	 (Beck	et	al.,	2013).	Our	 findings	may	help	
to identify areas where potential exposure to bat- borne pathogens 
may occur and potentially allow a better estimation of where pre-
cautionary steps and preventive actions may become necessary in 
the future.

5  |  SUMMARY AND CONCLUSIONS

We have identified environmental drivers, current environmental 
suitability, and possible future scenarios for M. pumilus	by	utilizing	
empirical	data	from	the	Taita	Hills	and	surrounding	plains	in	Kenya.	
The	focus	area	is	representative	of	much	of	rural	sub-	Saharan	Africa,	

and this is a common and widely distributed bat species that is host 
to virus groups with public health implications. Based on the results, 
we found that low variation in temperature within a year, short dis-
tance to rivers, sparse vegetation, and higher precipitation during 
the driest month drive the strongest environmental suitability for M. 
pumilus. Predicted current environmental suitability indicated great-
est suitability in low-  to mid- elevation areas south of the highest 
mountains	in	the	Taita	Hills.	These	areas	involve	urban	centers	with	
the highest human population densities in the area and are located 
in	the	vicinity	of	rangeland	and	wildlife	conservation	areas.	Most	of	
the human- dominated areas are predicted to remain suitable for M. 
pumilus	in	the	near	future	but	to	shrink	slightly	towards	the	end	of	
the century. Our results may have considerable public health value 
not	 only	 in	 Taita–Taveta	 County	 but	 also	 in	 other	 parts	 of	 Africa	
with comparable environmental conditions. Furthermore, our find-
ings can be used to better estimate the locations where preventive 
measures	will	be	required	and	to	identify	potential	exposure	sites	to	
bat-	borne	pathogens	 in	a	 landscape	known	for	 its	 risk	of	zoonotic	
disease emergence.
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