MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2023/2024 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER SCHOOL OF BUSINESS AND ECONOMICS. DEGREE IN ECONOMICS AND STATISTICS.

COURSE CODE: ECS 4108-1

COURSE TITLE: APPLIED MULTIVARIATE.

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions
This paper consists of FOUR printed pages. Please turn over.

Question One

a. State any two properties of orthogonal matrix. Hence show that;

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { is orthogonal }
$$

b. Give two properties of canonical correlation
c. Let $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right)$, find;
i. The eigenvalues of A
ii. $\quad \operatorname{Tr}(\mathrm{A})$
iii. Determinant of A
d. In discriminantanalysis, group represent either a population or a sample. Explain two main objectives to be considered in separation of groups
e. State two properties of multivariate normal distribution

Question Two

a. Samples of steel produced at two differentrolling temperatures are compared, where $y 1$ is the yield point and y 2 is the ultimate strength as shown in the table.

Temperature 1		Temperature 2	
$\mathbf{y 1}$	$\mathbf{y 2}$	$\mathbf{y 1}$	$\mathbf{y 2}$
33	60	35	57
36	61	36	59
35	64	38	59
38	63	39	61
40	65	41	63
	43	65	
	41	59	

Calculate;

i. The pooled covariance matrix $\left(S_{p l}\right)$
(8 marks)
ii. The discriminant function
iii. The values of projected points

Question Three

a. Three variables are measured at 10 different locations and the data is recorded as shown.

Location No.	y1	y2	y3
1	35	3.5	2.80
2	35	4.9	2.70
3	40	30.0	4.38
4	10	2.8	3.21
5	6	2.7	2.73
6	20	2.8	2.81
7	35	4.6	2.88
8	35	10.9	2.90
9	35	8.0	3.28
10	30	1.6	3.20

Given the covariance matrix $S=\left(\begin{array}{ccc}140.54 & 49.68 & 1.94 \\ 49.68 & 72.25 & 3.68 \\ 1.94 & 3.68 & 0.25\end{array}\right)$, find
i. Correlation matrix, R
(3 marks)
ii. Given that $z=3 y 1-2 y 2+4 y 3$, find mean and variance of z
(4 marks)
iii. Another linear combination $w=y 1+3 y 2-y 3$. Find the sample correlation between z and w
iv. Given the following three linear functions. Calculate correlation matrix R_{Z}
(5 marks)
$z 1=y 1+y 2+y 3$
$z 2=2 y 1-3 y 2+2 y 3$
$z 3=-y 1-2 y 2-3 y 3$

Question Four

a. Explain three properties of the two sample T^{2} test
(3 marks)
b. In a classical experiment, eight orange trees from each of the six rootstocks were compared. The experiment investigated the
comparison using four variables (extension growth, weight above ground, diameter, trunk girth). The four eigen values of $E^{-1} H$ are 1.886, $0.792,0.239$, and 0.026. Test the hypothesis $H_{0}: \mu_{1}=\cdots=\mu_{6}$ using
i. Approximated F statistic for Wilk's test
(4 marks)
ii. Lawley-Hotelling statistic (3 marks)
c. Using the data in question (3a), by applying the Hotelling T^{2} test. Test the hypothesis that: $H_{0}: \mu=\left(\begin{array}{c}27.8 \\ 6.6 \\ 3.0\end{array}\right)$. Use $\alpha=0.05$
(5 marks)

