MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND YEAR FIRSTSEMESTER

SCHOOL OF BUSINESS \& ECONOMICS BACHELOR OF SCIENCE IN ECONOMICS

COURSE CODE: ECO 2104-1 COURSE TITLE: PRODUCTION ECONOMICS

INSTRUCTIONS TO CANDIDATES

1. Answerquestion ONE and ANY other two questions

QUESTION ONE (COMPULSORY)

(a)Discuss the scope of production economics.

2 marks

(b) Write brief notes on the following:
(i) Technical efficiency

1 mark
(ii) Cost efficiency
(iii) Allocative efficiency
(iv) Isocosts
(v) Ridgelines
(c) Assume a general multiplicative production function of the form $y=2 x^{b}$.
(i) Derive the corresponding MPP and APP functions5 marks
(ii) Sketch the graph of TPP, APP and MPP when the value of b is 5, $0.7,3,0.3,2,0,1.5,-0.5,1.0,-1.0$. Be sure to show the sign, slope and curvature of MPP and APP.

5 marks
(iii) What is the value for the elasticity of production in each case?

3 marks

QUESTION TWO

Consider the production function $\mathrm{y}=\mathrm{aX}{ }^{\mathrm{b}}$
(a)Determine the supply function of the firm.

8 marks
(b) The elasticity of supply with respect to input and output prices.

4 marks
(c) The profit function.

3 marks

QUESTION THREE

Suppose that the production function is given by $y=x_{1}{ }^{0.5} \mathrm{X}_{2}{ }^{0.333}$ find
(a) The MPP of x_{1} and x_{2}.
2 marks
4 marks
(b) The Marginal rate of substitution of x_{1} for x_{2}.
(c) Draw the isoquants for this production function. Do they lie closer to the x_{1} or the x_{2} axis? Explain.

6 marks
(d) What relationship does the position of the isoquants have relative to the productivity of each input?

3 marks

QUESTION FOUR

Consider the following table of a farmer producing maize:

Combination	Units of X_{1}	Units of X_{2}
A	10	1
B	5	2
C	3	3
D	2	4
E	1.5	5

(a)Suppose that the price of x_{1} and x_{2} is each a shilling. What combination of x_{1} and x_{2} would be used to achieve the least-cost combination of inputs needed to produce 100 bag of maize? 6 marks
(b) Suppose that the price of x_{2} increased to 2 shillings. What combination of x_{1} and x_{2} would be used to produce 100 bags of maize?

3 marks
(c) If the farmer was capable of producing 100 bags of maize when the price of x_{1} and x_{2} were both 1 shilling, would he or she necessarily also be able to produce 100 bags of maize when the price of x_{2} increases to 2 shillings? Explain.

2 marks
(d) What is the MRTSx $x_{1} x_{2}$ and $\mathrm{x}_{2} \mathrm{X}_{1}$ for each combination? 4 marks

