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Abstract 

Geometric Measures of Variation about the mean is a measure that uses the geometric averaging 

technique to average the deviations from the mean. From previous studies, it has been determined 

that the measure is more precise in estimating the average variation about the mean than the 

existing measures of variation about the mean. Given that the technique is a newly introduced 

technique of estimating the average variation about the mean, the actual sample estimator for the 

measure is still unknown, as a result, the study aimed at determining the unbiased estimator for the 

population geometric measure. The study used a mathematical estimation technique to determine 

the unbiased estimator among the existing possible estimators as it assumed a simple random 

sampling without replacement technique. The study determined that the unbiased estimator of the 

population estimator was the sample estimator which did not allow one degree of freedom.  
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Introduction 

Geometric Measures of Variation about the mean is a measure that uses the geometric averaging 

technique to average the deviations from the mean [15, 16]. Unlike other measures of variation 

about the mean such as mean deviation, variance, and standard deviation [1,2,5]. The measure has 

been determined to be more efficient in estimating the average variation about the mean than the 

existing measures because of various reasons such as; unlike mean deviation, the measure average 

absolute products and not sums [9,11,13], which makes the estimates more precise based on the 

algebraic number theory on absolute numbers which shows that; 

Given 0, 0a b   and ,a b  by the definition of an absolute number which is a transformation 

such that :   (7). 

1. ab a b  

2. a b a b    

This shows that the averaging of deviation products by the geometric measures are more precise 

as illustrated by condition (1), however, the estimates given by mean deviation are not precise 
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because there is a slight difference between the actual values and the estimates as illustrated by the 

triangular inequality in condition (2) [8,12]. 

The geometric measure gives estimates of average variation about the mean of same units of 

measurement as the original dataset, unlike, variance which gives squared units of measurement 

for the estimates of average variation about the mean [1,12]). Lastly, the measure uses geometric 

averaging which is nonresponsive to outliers and skewed datasets, as a result, the measure is not 

affected by outliers and skewed datasets, unlike standard deviation. All these shows that geometric 

measure is a more superior measure of variation about the mean [1,2, 12]. 

In most research work, due to various factors such as cost, time constrain, impossibility in 

accessing all respondents in the study area among others, most researchers always opt to carry out 

sample surveys as opposed to complete enumeration of all respondents in the population, as a 

result, most researchers dependents on the sample estimates to make inferential conclusions 

regarding the population. Therefore, a researcher is always required to pick an estimator that would 

precisely estimate the population parameter during the estimation process [3,8]. 

As newly formulated measures of variation about the mean, the unbiased sample estimator of the 

population parameter still unknown. As a result, the aim of this study was to determine the 

unbiased estimator of the population geometric measure of variation, which will assist in the 

precise estimation of the measure for various samples [15, 16]. 

Methods 

Possible estimators 

In determining the unbiased estimator of the population geometric measure of variation about the 

mean, the study compared two possible estimators of the population geometric measures 

mathematically [8]. 

Consider a population vector of observations  1 2 3, , ,..., NV v v v v . We can define the mean of the 

population vector V as 
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                                                                                                                                       (1) 

Further, define the ith population deviation  iD  as 

i iD v V                                                                                                                                      (2) 

Therefore, the population deviation vector will be given by  1 2 3, , ,..., ND D D D D . Now assume 

that all the observations in the population 
iv V , therefore, all 0iD  . Hence, by definition, the 

geometric measure of variation about the mean G for the population will be given by [15, 16] 



1

0

0 0

N

N
i i

i

i

D D
G

D




 

 


 

                                                                                                               (3) 

Using natural logarithms, Equation (3) can be simplified as 

1

ln

exp 0

0 0

N

i

i

D

iN

i

D
G

D



  
    

  
 

  

                                                                                                        (4) 

Consider a random sample vector of size n from the above population vector and a dummy weight 

ik  such that [ 3 ] 
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                                                                                                                                         (5) 

where 1ik   when the coefficient observation in the population iv  is selected into the sample and 

0ik   when the coefficient observation in the population iv  is not selected into the sample. Based 

on this, the sample mean v  is defined by 
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Based on the above sample, we can estimate the population geometric measure of variation using 

two methods. First, we can average the sample average variation about the mean using geometric 

average as follows [15, 16]. 

Define the ith deviation from the sample mean v  as 

i id v v                                                                                                                                      (7) 

The sample geometric measure of variation about the mean rg  will be given by 
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The above estimate can be simplified using logarithm as 
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Secondly, we can estimate the population geometric measure of variation about the mean by 

allowing a 1 degree of freedom in the sample estimation process, this will result into a new measure 

of variation about the mean 
qg  which is given by [15, 16] 
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Equation [10] can be simplified using logarithm to obtain 
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The above two methods are all possible estimators of the population geometric measure. As a 

result, the study aims at proving which of the two estimators is an unbiased estimator of the 

population geometric measure. 

Assuming a homogenous population distribution, the study assumes a simple random sampling 

technique without replacement during the estimation process of the population parameter using 

either of the two methods [14, 17].  

Results 

Theorem  

Given the population geometric measure G, an estimator g of the parameter is said to be unbiased 

by definition if [4].  

 E g G  

Based on this theorem, if any of the two estimators rg  or 
qg  is an unbiased estimator of the 

population parameter G then by definition of an unbiased estimator 

 rE g G   

or 



 qE g G  

Proof 

We can determine which one of these two estimators is the true unbiased estimator of the parameter 

G  as follows; 

Starting with 
rg considering a random sample of size n, from a population  1 2 3, , ,..., NV V V V V . 

The sample vector  v selected at random using simple random sampling without replacement from 

the population is given by  1, 2,3, 4,...i iv k V i N   where 
ik  is a dummy weight such that [3, 14, 

17]  
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where 1ik   when the coefficient observation in the population iV  is selected into the sample and 

0ik   when the coefficient observation in the population 
iV  is not selected into the sample. The 

sample mean is given by [3, 6] 
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The ith deviation from the mean is defined by 

i id V v     

The geometric measure of variation about the mean rg  is therefore given by 
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This can be simplified as 
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Given that the population geometric measure G is defined by  
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Then if rg  is an unbiased estimator of G then 
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                                                                                        (12) 

Now given the unique nature of exponential such that 

   exp exp ,K R iffK R                                                                                                          (13) 

Then if  ln rg  is an unbiased estimator of  ln G , then kg  is an unbiased estimator of G. Now, 

if   ln rg  is an unbiased estimator of  ln G then 

    ln lnrE g G                                                                                                                      (14) 

By definition  
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Then 
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It can be shown that  

 ln lni iE d D                                                                                                                           (17) 

This is because 

          ln ln ln lni i i iE d E d E V v E V E v      

Because the sample mean v  is an unbiased estimator of the population mean, therefore 

ln lni iV V D    therefore, 
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Now, given that ik  is a binary dummy variable, it can be seen that ik  is Bernoulli distributed with 

probability mass function 
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Therefore, the expected value of 
ik  by definition is p. we can determine the actual value of p 

through obtaining the maximum likelihood estimator of p from the probability mass function as 

follows [ 4 ]; 

Let L be the likelihood function of the probability mass function of 
ik  which is given as 
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Now we get the log-likelihood function, which is given by 
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Now, differentiating Equation (21) with respect to p in order to maximize the estimator we get that 
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Equating the above Equation (22) to zero we have that 
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But there are n 
ik terms which are equivalent to 1 with the rest being equivalent to 0, therefore, it 

can be shown that  
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Hence, the maximum likelihood estimator of 
n

p
N

 . Therefore 
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Hence, going back to Equation (18) we can now show that 
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Hence, the estimator rg  if an unbiased estimator of the population parameter G. 

Second, Consider the estimator 
qg  which is given by the function 
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Similar to 
rg , if 

qg  is an unbiased estimator of G then  
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Given the unique character of exponentiation illustrated in Equation (13), then if Equation (26) is 

true, then  
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But according to Equation (18) 
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Therefore, the estimator 
qg  is a biased estimator of the population geometric measure G. 



Conclusion 

In conclusion, considering a simple random sample without replacement, the unbiased estimator 

of the population geometric measure is given by the estimator which does not allow one degree of 

freedom during the estimation process of the population parameter. The unbiased estimator is 

given by 
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Recommendation 

When estimating the average variation about the mean for a sample using the geometric measure, 

one should use the above estimator rg  because it is unbiased and more precise in estimating the 

average variation about the mean for a sample. 
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