Repellence of Essential Oil of *Nigella sativa L.* Seeds Against *Anopheles gambiae* and Identification of the Active Blend

Ephantus Ndirangu
Kenyatta University. Kenya
githui73@gmail.com

Abstract

The objective of this study was to evaluate the repellence of the essential oil on Nigella s seeds using An. gambiae and identify the active constituents and blend. Nigella sativa L. seed ground and hydro-distilled. Then bioassays of essential oil were conducted on human s against newly emerged female An. gambiae using DEET as the positive control. It was not the repellence (98.81±1.19 and 100.00±0.00 at a concentration of 0.01g/ml and respectively) of the essential oil against An. gambiae was comparable to that of DEET (100.0 and 100.00±0.00 at a concentration of 0.01g/ml and 0.1g/ml respectively) at higher however, it showed lower repellence (36.97±1.81 and 50.41±2.87 against 51.11±13... 86.22±4.51 of DEET at concentration of 0.0001g/ml and 0.0001g/ml respectively) at lower GC-MS and GC-EAD (Gas Chromatography-linked Electro Antennography) analyses of the e oil led to the identification of eight bioactive constituents namely α -thujene (19), longifole 1, 2, 3, 4, 5-pentamethylcyclopentane (18), α -pinene (20), β -pinene (22), tetradecane (cymene (11), and α -longipinine (37). Subtractive bioassays to characterize the constituer contributed most to the repellence of the oil were then carried out. The most repellent ble found to contain (+)- β -pinene (41), (-)- β -pinene (42), (+)- α -pinene (39), (-)- α -pinene (longipinene (37), tetradecane (24) and 1,2,3,4,5 pentamethylcyclopentane (18) (RD₇₅ = though less repellent than DEET (RD₇₅=1.630). Bioassay of pure (+)- α -pinene (39) and (-)- α (40) showed that (+)- α -pinene (39) was a better repellent than (-)- α -pinene (40). More studie to be undertaken on the essential oil of N. Sativa seeds to determine the optical stereochem the α -pinene (20) and β -pinene (22) and also establish whether α -thujene (19) and longifole contribute to repellency or not against An. gambiae. These results form the basis of dowr development of the appropriate blends for personal protection against An. gambiae.

Keywords: Malaria, *Nigella sativa L.* seeds, *Anopheles gambiae*, blend

