

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2022/2023 FIRST YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES DIPLOMA IN CRIMINOLOGY

COURSE CODE: CRM 103 COURSE TITLE: QUANTITATIVE SKILLS II

DATE: 18/4/2023

TIME: 1430-1630 HRS

INSTRUCTIONS

- Answer question ONE and any other TWO questions from section II
- 2. Question one is compulsory

Section A, COMPULSORY

QUESTION ONE (30 marks)

(a) Construct a frequency distribution table for the following data (5mks) 8 4 6 7 9 6 3 8 7 7 5 8 10 7 7 7 2 6 9 5 6 4 8 7 8 10 1 7 6 5 6 5 4 5 4 8 3 9 7 5 2 6 7 5 5 (b) Consider the following sets A ={1,2,3}, B = {1,3,5,6} and C={2,4,6} A U B (i) (3mks) (ii) $A \cap B$ (2mks) (c) Consider the universal set U= $\{1,2,3,4,5,6,7\}$ and A = $\{1,3,6\}$. Find A^c (3mks) (d) The following data represent skin colours of some students. Represent

	0 1			1
them in a b	ar graph	(5mks)		
Colour	Black	Brown	white	chocolate
Number of	15	10	20	5

- (e) The probability of passing KCSE examination depends on the performance in school mock exam. If the candidate passes the mock exam, the probability of passing KCSE is $\frac{4}{5}$. If the candidate fails mock exam, the probability of passing KCSE is $\frac{3}{5}$. If a candidate passes KCSE, the probability that he will be employed is $\frac{5}{8}$. If he fails the probability of getting employed is $\frac{1}{3}$. The probability of passing mock exam is $\frac{2}{3}$
 - i. Draw a well labeled tree diagram to represent the above information (5mks)
- (f) Consider the following data set

students

5,3,4,2,4,7,2,3,4,9,4,5

i. Calculate

a.	Mean	(3mks)
b.	Variance	(3mks)
c.	Mode	(1mk)

SECTION B, ANSWER ONLY TWO QUESTIONS

QUESTION TWO

- (a) In a livestock research station, a new drug for a certain fowl disease is being tried. A sample of 36 fowls was diagnosed to have the disease. Twenty (20) fowls were treated with the drug and the rest were not. Calculate the probability that a fowl picked at random is
 - (i) Treated with the drug (1mks)
 - (ii) Not treated with the drug (1mks)
- (b) If a fowl is treated, the probability of dying is $\frac{1}{10}$ while if not treated the

probability is $\frac{7}{10}$. Calculate the probability that, a fowl picked at random from the 36 fowls is

- (i) Treated with the drug and will die (2mks)
- (ii) Not treated with the drug and will die (2mks)
- (iii) Treated with drug and will not die (2mks)
- (iv) Not treated with the drug and will not die (2mks)
- (c) The probability that a pupil goes to school by a boda-boda is 2/3 and by a matatu is 1/4. If he uses a bodaboda the probability that he will be late is 2/5 and if he uses a matatu the probability of being late is 3/10. If he uses other means of transport the probability of being late is 3/20
 - (i) Draw a tree diagram to represent the information (3mks)
 - (ii) Find the probability that he will be late for school (3mks)
 - (iii) Find the probability that he will be late for school if he does not use matatu (2mks)
 - (iv) What is the probability that he will not be late for school (2mks)

QUESTION THREE

(a) Consider the following data

Class	90-94	95-99	100-104	105-	110-114	115-11	120-124
es				109		9	
Frequ	12	4	14	8	6	4	2
ency							

(i) Construct a cumulative frequency curve for the data above (5mks)

(ii) Construct a frequency polygon for the data above (5mks)

(iii) Consider the total population of animals in a farm given as 2100. Out of these 800 are chicken, 200 are cows, 300 are goats, 700 are sheep and 100 are ducks. Represent the information on a pie chart (10mks)

QUESTION FOUR (20 marks)

(a) The data below illustrate the distribution of wages of employees in a certain company. Use it to answer the following questions. (20mks)

Wages	Frequency
50 - 56	4
57 - 63	7
64 - 70	8
71 – 77	5
78 - 84	10
85 - 91	7
92 - 98	9

Calculate

- (i) State the modal class
- (ii) Arithmetic mean
- (iii) Mode
- (iv) Median
- (v) Variance
- (vi) Standard deviation

QUESTION FIVE (20 marks)

b. Make a frequency distribution table for the following data using five classes (5mks)

5 10 7 19 25 17 15 7 6 8 17 17 22 21 7 7 24 5 6 5

b.	Evaluate	(3mks)
	9! ×7!	
c.	What is the value of?	(3mks)
	⁸ C ₃	
d.	If A is a set of odd numbers le	ess than 20 and B is a set prime numbers less
	than 10. Find A-B	(4mks)
e.	Define the following terms	(6mks)
I.	Set	
II.	Singleton set	
III.	Frequency	
IV.	Pie chart	
V.	A cumulative frequency curve	
VI.	Probability	
	-	

//END//