

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS
 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF BUSINESS \& ECONOMICS BACHELOR OF SCIENCE IN ECONOMICS \& STATISTICS

COURSE CODE: ECO 4203/ECS 3203 COURSE TITLE: ECONOMETRICS II

\qquad

INSTRUCTIONS TO CANDIDATES
Answer Question ONE and any other THREE questions

QUESTION ONE (25 MARKS)

a) The assumptions underlying the classical linear regression model are:
A. 1 Linearity
A. $2 \quad$ Full rank: $\operatorname{rank}(X)=k$
A. 3 Errors have zero mean: $E(\varepsilon)=0$
A. 4 Spherical errors
A. 5 The process that generates X is unrelated to the process that generates A. 6 Normality of errors

Under these assumptions, estimation of the linear model by OLS is sensible.
Estimation of the variance of \mathbf{b} by $s^{2}\left(X^{\prime} X\right)^{-1}$ is also sensible. For each of the assumptions listed above, explain:
(i) how the assumption might be violated
[3 Marks]
(ii) The implications for estimating the model by OLS
[3 Marks]
(iii) How the problem might be corrected, or how an alternative estimator might be used to correct the problem (if possible).
[4 Marks]
b) A researcher is considering two regression specifications to estimate the relationship between a variable X and Y ,

$$
\begin{array}{ll}
\log Y=\beta_{1}+\beta_{2} \log X+U & \text { (Equation 1) } \\
\log \frac{X}{Y}=\alpha_{1}+\alpha_{2} \log X+V & \text { (Equation 2) }
\end{array}
$$

Where the Greek letters refer to parameters and X and Y are two random, variables, which we have a random sample of, size n.
i. Determine whether (Equation2) can be represented as a restricted version of (Equation1)
[3 Marks]
ii. Using the same n observations of variable X and Y, the researcher fits two specifications using ordinary least squares (OLS). The fits are:

$$
\begin{array}{ll}
\widehat{\log Y} & =\hat{\beta}_{1}+\hat{\beta}_{2} \log X \tag{Equation3}\\
\log \frac{X}{Y} & =\hat{\alpha}_{1}+\hat{\alpha}_{2} \log X
\end{array} \quad(\text { Equation 3) }
$$

Using the expressions for the estimates write $\hat{\beta}_{2}$ in terms of $\hat{\alpha}_{2}$, Write $\hat{\beta}_{1}$ in terms of $\hat{\alpha}_{1}$ [2 Marks]
iii. Demonstrate that $\widehat{\log Y}-\log X=\widehat{\log \frac{X}{Y}}$
[3 Marks]
iv. Demonstrate that the residuals in (Equation 3) are identical to those in (Equation 4)
[2 Marks]
v. Determine the relationship between the t statistic using $\hat{\beta}_{2}$ and the t statistic using $\hat{\alpha}_{2}$
[3 Marks]
vi. Explain with detailed arguments whether R^{2} would be the same in the two regressions.
[3 Marks]

QUESTION TWO (15 MARKS)

a) Consider the following model:

$$
\begin{aligned}
& \hat{Y}_{i}=-0.261-2.306 D_{2 i}-1.7327 D_{3 i}+2.1289 D_{2} D_{3 i}+0.8028 X_{i} \\
& \mathrm{t}=(-0.2357)(-5.4873)^{*}(-2.1803)^{*}(9.9094)^{*} \\
& \mathrm{R}^{2}=0.2032, \mathrm{n}=528, \alpha=0.05 \\
& \rightarrow \text { indicate } \mathrm{P} \text { value is less than } 0.05
\end{aligned}
$$

Where $\mathrm{Y}_{\mathrm{i}} \rightarrow$ hourly wage in dollar
$\mathrm{X} \rightarrow \quad$ education (Years if schooling)
$D_{2}=1$ if female, 0 if male
$\mathrm{D}_{3}=1$ if non-white and non-Hispanic $=0$ if otherwise
Interpret these results
b) The following are the daily stock prices of a company listed at the Nairobi Stock Exchange during the month of September 2017
$12,16,14,17,19,15,11,19,23,15,16,18,16,24,10,20,15,24,15,15,16$
i. Compute the sample mean, variance, skewness, excess kurtosis, and minimum and maximum of the daily simple returns
[3 Marks]
ii. Compute the daily log returns $r t$
[2 Marks]
iii. Compute the sample mean, variance, skewness, excess kurtosis, and minimum and maximum of the daily log returns
[3 Marks]
iv. Perform the Jarque and Bera test on the normality of $r t$
[2 Marks]

QUESTION THREE (15 MARKS)

a) Write the functional form of $E\left(y_{i} / x_{i}, \beta\right)$, the conditional mean function, that is used in each of the following
i. Probit model
[2 Marks]
ii. Logit model
[2 Marks]
b) For the logit model, derive the marginal effect, or partial derivative $\partial E\left(y_{i} / x_{i}, \beta\right) / \partial x_{i j}$, where $x_{i j}$, is the $j^{\text {th }}$ element of the x_{i} vector[4 Marks]
c) Suppose logit model estimation produces the following table

Variable Name	Estimated Coefficient	Standard Error	Asymptotic T-Ratio
X1	3.8	1.7	2.2
X2	-1.6	0.54	-3.0
Constant	-4.2	2.3	-1.8

i. What is the predicted probability that $y=1$ when $x_{1}=2$ and $x_{2}=0.5$?
[2 Marks]
ii. Compute the change in the predicted probability when x_{2} increases by one unit from $x_{2}=0.5$ to $x_{2}=1.5$, holding x_{1} at $x_{1}=2$
iii. Using the derivative result from part (a) and the estimates of the above table, compute the partial derivative $\partial E\left(y / x_{1}, x_{2}, \beta\right) / \partial x_{2}$, at the x value given in part (i)
iv. Comment on the difference between the answers to (ii) and (iii)

QUESTION FOUR (15 MARKS)

The following model has been developed for studying the relationship of the GDP with interest rate, inflation and exchange rate.

$$
G D P_{\mathrm{i}}=a_{0}+a_{I N T} I N T+a_{I N F} I N F+a_{E X R} E X R+\mathrm{e}_{\mathrm{i}}
$$

In the above model GDP has been taken as a dependent variable whereas, interest rate, inflation and exchange rate has been included as an independent variables.

- GDP is the Gross Domestic Product of Pakistan which has been converted into real form by using financial year 1976 as a base period and log of it has been taken.
- INT is the nominal discount rate. It is used into real form after adjusting it for inflation.
- INF is the inflation rate of Pakistan which is shows the annual percentage change in consumer price index
- EXR is the nominal exchange rate of Pakistan rupee against US dollar.

Table. 1.1: Regressions Results
Dependent Variable : GDP
Method : Least Squares
Sample : 1973-2008

Variable

Coefficient		t-stat prob.		
EX	2.04*	6.25	0.00	
	(0.32)			
IF	1.89*	3.56	0.00	
	(0.53)			
R	0.11*	3.08	0.01	
	(0.04)			
C	4.50*	2.57	0.01	
	(1.75)			
R2	0.67	Akaik I	fo Criterion	2.66
Adjusted R2	0.64	Schwar	Criterion	2.84
F-Stat	21.56	Durbin	Watson Stat	0.78
Prob (F-Stat)	0.00			

1. "*" shows 5% level of significance
2. A rise in exchange rate means devaluation
3. Figures in parenthesis shows SE of the estimates
a) Comment on the use and meaning of the following statistics from the table above

i.	R-squared	[2 Marks]
ii.	The Akaike information and Schwarz criteria	[3 Marks]
iii.	The F statistics and Durbin Watson	[3 Marks]

b) For examining the serial correlation in data, and confirmation of the above results Correlogram, Q-Statistics, Correlogram squared Residuals and Breusch- Godfrey Serial Correlation LM test are used given in figures 1.2, and 1.3 respectively.

Figure 1.2: Correlogram test results

1989	13.5108	13.5909	-0.08019	*
1990	13.6169	14.4305	-0.81361	* \|
1991	13.7928	13.3300	0.46284	\|*
1992	13.9642	12.9864	0.97783	. \| *
1993	14.0663	13.3507	0.71566	*.
1994	14.2255	13.5224	0.70305	*.
1995	14.4048	13.8966	0.50826	\|*
1996	14.5341	14.9232	-0.38907	*
1997	14.6715	14.2990	0.37251	\|*
1998	14.7574	13.8803	0.87707	. \| *
1999	14.8503	14.7203	0.13005	. ${ }^{*}$
2000	15.1143	16.1517	-1.03737	*. \|
2001	15.2099	15.4278	-0.21788	. *\|
2002	15.2660	14.0209	1.24506	*
2003	15.3567	14.7712	0.58546	*
2004	15.5024	14.9553	0.54716	*
2005	15.6442	14.9959	0.64830	*.
2006	15.8036	15.1651	0.63851	. \|*
2007	15.9327	14.9947	0.93796	*
2008	16.1031	15.3764	0.72672	*.

Figure. 1.3: Correlogram Q-Statistics Results

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
. ${ }^{* * * * * \mid}$. ${ }^{* * * *}$		1	0.561	0.561	12.315	0.000		
.\|**		.*.		2	0.242	-0.107	14.665	0.001	
. \|**	. ${ }^{*}$. \|		3	0.233	0.210	16.908	0.001		
. \|*.	.*\|.		4	0.101	-0.169	17.343	0.002		
.\|*.		\|*.			5	0.085	0.157	17.660	0.003
. ${ }^{*}$.	. 1.		6	0.110	-0.038	18.208	0.006		
.\|.		.*\|			7	0.003	-0.067	18.209	0.011
. 1.	. ${ }^{*}$.		8	0.059	0.143	18.380	0.019		
. \|*.		.1. \|		9	0.143	0.033	19.416	0.022	
. \|*.	. ${ }^{*}$.		10	0.152	0.113	20.629	0.024		
.\|*.		\|.		11	0.139	-0.046	21.685	0.027	
. 1.	.*.		12	-0.027	-0.195	21.726	0.041		
.*\|		.\|.			13	-0.148	-0.063	23.035	0.041
.*\|.	.*)		14	-0.145	-0.090	24.338	0.042		
.*\|		.\|.			15	-0.138	0.023	25.582	0.043
. 1.	. ${ }^{*}$.		16	-0.025	0.144	25.626	0.060		

Figure. 1.4: Correlogram Squared Residuals

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
. ${ }^{* * *} \mid$. ${ }^{* * *}$ \|		1	0.415	0.415	6.7443	0.009		
. ${ }^{*}$.	. ${ }^{1}$.		2	0.077	-0.115	6.9858	0.030		
**\|.		**\|			3	-0.216	-0.250	8.9171	0.030
**.	. 1.		4	-0.216	-0.024	10.913	0.028		
**\|		.*\|			5	-0.207	-0.112	12.807	0.025
. ${ }^{*}$.	. ${ }^{*}$		6	0.085	0.213	13.138	0.041		
. ${ }^{*}$. \|	. \|.			7	0.144	-0.011	14.110	0.049	
. 1.	**		8	-0.025	-0.244	14.140	0.078		
.*) \|	. 1.		9	-0.107	0.019	14.725	0.099		
. 1.	. ${ }^{*}$.		10	-0.058	0.074	14.900	0.136		
. 1.	. 1.		11	-0.036	-0.017	14.971	0.184		
. 1.	. 1.		12	0.001	-0.038	14.971	0.243		
. 1.	. 1.		13	0.072	-0.016	15.279	0.290		
. 1.	. 1.		14	0.011	-0.031	15.286	0.359		
. 1.	. 1.		15	-0.055	0.016	15.486	0.417		
.*\|		. 1.		16	-0.074	-0.052	15.865	0.462	

Comment on the following:
i. The presence or absence of autocorrelation between the variables using the Q -statistics [3 Marks]
ii. Correlogram of the squared residuals for test hetroscedasticity from Figure 1.4.[4 Marks]

QUESTION FIVE (15 MARKS)

Suppose the following equations were set up as a simple macroeconomic model of USA. Altogether 2 mutually dependent Y variables were simultaneously determined by 3 predetermined X variables.

$$
\begin{gathered}
Y_{1}=\gamma_{2} Y_{2}+\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon \\
\quad Y_{2}=\gamma_{1} Y_{1}+\beta_{3} X_{3}+\epsilon
\end{gathered}
$$

a) Outline how you would estimate:
i. The first equation
(2 marks)
ii. The second equation
b) Now consider a smaller simultaneous system than the one in (a) with two mutually dependent Y variables and just 1 predetermine X variable.

$$
\begin{gathered}
Y_{1}=\gamma_{2} Y_{2}+\epsilon \\
Y_{2}=\gamma_{1} Y_{1}+\beta_{1} X_{1}+\epsilon
\end{gathered}
$$

Y_{1}	Y_{2}	X_{1}
38	8	21
27	15	17
31	10	20
21	18	14
20	15	12
43	6	24

Average $30 \quad 12 \quad 18$
i. Using the above data, derive the 2SLS estimate of the coefficient γ_{2} in the first equation.
(4 marks)
ii. Using 2SLS on the second equation set up the appropriate estimating equations for γ_{1} and β_{1} in symbols and numbers.
(4 marks)
iii. Give reason why you couldn't solve for γ_{1} and β_{1} ?

END / /

