

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF BUSINESS & ECONOMICS BACHELOR OF SCIENCE IN ECONOMICS & STATISTICS

COURSE CODE: ECO 4203/ECS 3203 COURSE TITLE: ECONOMETRICS II

DATE: 15^{TH} OCTOBER, 2021

TIME: 0830 - 1030HRS

INSTRUCTIONS TO CANDIDATES Answer Question **ONE** and any other **THREE** questions

This paper consists of **SEVEN** printed pages. Please turn over.

QUESTION ONE (25 MARKS)

- a) The assumptions underlying the classical linear regression model are:
 - A.1 Linearity
 - A.2 Full rank: rank(X) = k
 - A.3 Errors have zero mean: $E(\varepsilon) = 0$
 - A.4 Spherical errors
 - A.5 The process that generates X is unrelated to the process that generates
 - A.6 Normality of errors

Under these assumptions, estimation of the linear model by OLS is sensible. Estimation of the variance of **b** by $s^2(X'X)^{-1}$ is also sensible. For each of the assumptions listed above, explain:

(i) how the assumption might be violated [3 Marks]

(ii) The implications for estimating the model by OLS [3 Marks](iii) How the problem might be corrected, or how an alternative estimator might be used to correct the problem (if possible). [4 Marks]

b) A researcher is considering two regression specifications to estimate the relationship between a variable X and Y,

$\log Y = \beta_1 + \beta_2 \log X + U$	(Equation 1)
$\log \frac{x}{v} = \alpha_1 + \alpha_2 \log X + V$	(Equation 2)

Where the Greek letters refer to parameters and X and Y are two random, variables, which we have a random sample of, size n.

- i. Determine whether (Equation2) can be represented as a restricted version of (Equation1) [3 Marks]
- ii. Using the same n observations of variable X and Y, the researcher fits two specifications using ordinary least squares (OLS). The fits are:

$\widehat{\log Y} = \hat{\beta}_1 + \hat{\beta}_2 \log X$	(Equation 3)
$\widehat{\log \frac{X}{v}} = \hat{\alpha}_1 + \hat{\alpha}_2 \log X$	(Equation 4)

Using the expressions for the estimates write $\hat{\beta}_2$ in terms of $\hat{\alpha}_2$, Write $\hat{\beta}_1$ in terms of $\hat{\alpha}_1$ [2 Marks]

- iii. Demonstrate that $\widehat{\log Y} \log X = \log \frac{\overline{X}}{\overline{Y}}$ [3 Marks]
- iv. Demonstrate that the residuals in (Equation 3) are identical to those in (Equation 4) [2 Marks]
- v. Determine the relationship between the t statistic using $\hat{\beta}_2$ and the t statistic using $\hat{\alpha}_2$ [3 Marks]
- vi. Explain with detailed arguments whether R^2 would be the same in the two regressions. [3 Marks]

QUESTION TWO (15 MARKS)

a) Consider the following model:

 $\hat{Y}_{i} = -0.261 - 2.306D_{2i} - 1.7327D_{3i} + 2.1289D_2D_{3i} + 0.8028X_{i}$ $t = (-0.2357)(-5.4873)^*(-2.1803)^*(9.9094)^*$ $R^2 = 0.2032, n = 528, \alpha = 0.05$ * \rightarrow indicate P value is less than 0.05 Where $Y_i \rightarrow$ hourly wage in dollar X→ education (Years if schooling) $D_2 = 1$ if female, 0 if male = 1 if non-white and non-Hispanic D_3 =0 if otherwise

Interpret these results

b) The following are the daily stock prices of a company listed at the Nairobi Stock Exchange during the month of September 2017

12,16,14,17,19,15,11,19,23,15,16,18,16,24,10,20,15,24,15,15,16

Compute the sample mean, variance, skewness, excess kurtosis, and minimum i. and maximum of the daily simple returns [3 Marks]

- ii. Compute the daily log returns rt [2 Marks] iii. Compute the sample mean, variance, skewness, excess kurtosis, and minimum and maximum of the daily log returns [3 Marks]
- iv. Perform the Jarque and Bera test on the normality of *rt* [2 Marks]

QUESTION THREE (15 MARKS)

- a) Write the functional form of $E(y_i / x_i, \beta)$, the conditional mean function, that is used in each of the following
 - Probit model i. [2 Marks] ii. Logit model
 - [2 Marks]
- b) For the logit model, derive the marginal effect, or partial derivative $\partial E(y_i / x_i, \beta) / \partial x_{ii}$, where x_{ii} , is the j^{th} element of the x_i vector[4 Marks]
- c) Suppose logit model estimation produces the following table

Variable Name	Estimated Coefficient	Standard Error	Asymptotic T-Ratio
X1	3.8	1.7	2.2
X2	-1.6	0.54	-3.0
Constant	-4.2	2.3	-1.8

[5 Marks]

- i. What is the predicted probability that y = 1 when $x_1 = 2$ and $x_2 = 0.5$?
- ii. Compute the change in the predicted probability when x_2 increases by one unit from $x_2 = 0.5$ to $x_2 = 1.5$, holding x_1 at $x_1 = 2$ [2 Marks]
- iii. Using the derivative result from part (a) and the estimates of the above table, compute the partial derivative $\partial E(y/x_1, x_2, \beta) / \partial x_2$, at the x value given in part (i) [3 Marks]
- iv. Comment on the difference between the answers to (ii) and (iii) [2 Marks]

QUESTION FOUR (15 MARKS)

The following model has been developed for studying the relationship of the GDP with interest rate, inflation and exchange rate.

 $GDP_i = a_0 + a_{INT} INT + a_{INF} INF + a_{EXR} EXR + e_i$

In the above model GDP has been taken as a dependent variable whereas, interest rate, inflation and exchange rate has been included as an independent variables.

- *GDP* is the Gross Domestic Product of Pakistan which has been converted into real form by using financial year 1976 as a base period and log of it has been taken.
- *INT* is the nominal discount rate. It is used into real form after adjusting it for inflation.
- INF is the inflation rate of Pakistan which is shows the annual percentage change in consumer price index
- EXR is the nominal exchange rate of Pakistan rupee against US dollar.

Table. 1.1: Regressions Results

Dependent Variable : GDP
Method : Least Squares
Sample : 1973-2008

		Va	riable	
	Coefficient	t-stat pro	b.	
EX	2.04*	6.25	0.00	
IF	(0.32) 1.89*	3.56	0.00	
R	(0.53) 0.11*	3.08	0.01	
С	(0.04) 4.50*	2.57	0.01	
	(1.75)			
R2	0.67	Akaik Ir	nfo Criterion	2.0
Adjusted I	R2 0.64	Schwarz	z Criterion	2.8
F-Stat Prob (F-Sta	21.56 at) 0.00	Durbin	Watson Stat	0.'

66 84 78

- 1. "*" shows 5 % level of significance
- 2. A rise in exchange rate means devaluation
- 3. Figures in parenthesis shows SE of the estimates
- a) Comment on the use and meaning of the following statistics from the table above
 - i. R-squared
 - ii. The Akaike information and Schwarz criteria
 - iii. The F statistics and Durbin Watson
- b) For examining the serial correlation in data, and confirmation of the above results Correlogram, Q-Statistics, Correlogram squared Residuals and Breusch- Godfrey Serial Correlation LM test are used given in figures 1.2, and 1.3 respectively.

obs	Actual Fitted	Residual	Residual Plot	
1973	11.0767	12.3973	-1.32060	*. .
1974	11.3432	11.2464	0.09679	. * .
1975	11.5759	11.2424	0.33349	. *.
1976	11.7350	12.0948	-0.35975	.* .
1977	11.8736	12.5834	-0.70976	.* .
1978	12.0371	13.1197	-1.08262	* .
1979	12.1373	14.3830	-2.24576	* . .
1980	12.3208	14.1044	-1.78366	
1981	12.4930	13.5113	-1.01825	* .
1982	12.6459	12.9506	-0.30465	.* .
1983	12.7629	12.4378	0.32516	. * .
1984	12.9045	13.0820	-0.17747	. * .
1985	13.0220	12.9870	0.03498	.*.
1986	13.1080	12.0021	1.10588	. .*
1987	13.2147	13.5667	-0.35205	.* .
1988	13.3800	13.4600	-0.08003	. * .

Figure 1.2: Correlogram test results

1989	13.5108	13.5909	-0.08019	* .
1990	13.6169	14.4305	-0.81361	.* .
1991	13.7928	13.3300	0.46284	. * .
1992	13.9642	12.9864	0.97783	*
1993	14.0663	13.3507	0.71566	. *.
1994	14.2255	13.5224	0.70305	. *.
1995	14.4048	13.8966	0.50826	. *.
1996	14.5341	14.9232	-0.38907	. * .
1997	14.6715	14.2990	0.37251	. * .
1998	14.7574	13.8803	0.87707	. *
1999	14.8503	14.7203	0.13005	. * .
2000	15.1143	16.1517	-1.03737	*. .
2001	15.2099	15.4278	-0.21788	. * .
2002	15.2660	14.0209	1.24506	*
2003	15.3567	14.7712	0.58546	. *.
2004	15.5024	14.9553	0.54716	. *.
2005	15.6442	14.9959	0.64830	. *.
2006	15.8036	15.1651	0.63851	. *.
2007	15.9327	14.9947	0.93796	. *
2008	16.1031	15.3764	0.72672	. *.

[2 Marks] [3 Marks]

[3 Marks]

Figure. 1.3: Correlogram Q-Statistics Results

Autocorrelation	Partial Correlation	AC	PAC	O-Stat	Prob		
. ****	. ****		1	0.561	0.561	12.315	0.000
. **	.* .		2	0.242	-0.107	14.665	0.001
. **	. *.		3	0.233	0.210	16.908	0.001
. *.	.* .		4	0.101	-0.169	17.343	0.002
. *.	. *.		5	0.085	0.157	17.660	0.003
. *.	. .		6	0.110	-0.038	18.208	0.006
	.* .		7	0.003	-0.067	18.209	0.011
	. *.		8	0.059	0.143	18.380	0.019
. *.			9	0.143	0.033	19.416	0.022
. *.	. *.		10	0.152	0.113	20.629	0.024
. *.	. .		11	0.139	-0.046	21.685	0.027
	.* .		12	-0.027	-0.195	21.726	0.041
.* .	. .		13	-0.148	-0.063	23.035	0.041
.* .	.* .		14	-0.145	-0.090	24.338	0.042
.* .	. .		15	-0.138	0.023	25.582	0.043
. .	. *.		16	-0.025	0.144	25.626	0.060

Figure. 1.4: Correlogram Squared Residuals

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
. ***	. ***		1	0.415	0.415	6.7443	0.009
. *.	.* .		2	0.077	-0.115	6.9858	0.030
** .	** .		3	-0.216	-0.250	8.9171	0.030
** .	. .		4	-0.216	-0.024	10.913	0.028
** .	.* .		5	-0.207	-0.112	12.807	0.025
. *.	. *.		6	0.085	0.213	13.138	0.041
. *.	. .		7	0.144	-0.011	14.110	0.049
. .	** .		8	-0.025	-0.244	14.140	0.078
.* .	. .		9	-0.107	0.019	14.725	0.099
. .	. *.		10	-0.058	0.074	14.900	0.136
. .	. .		11	-0.036	-0.017	14.971	0.184
. .	. .		12	0.001	-0.038	14.971	0.243
. .	. .		13	0.072	-0.016	15.279	0.290
. .	. .		14	0.011	-0.031	15.286	0.359
. .	. .		15	-0.055	0.016	15.486	0.417
.* .	. .		16	-0.074	-0.052	15.865	0.462

Comment on the following:

i. The presence or absence of autocorrelation between the variables using the Q-statistics

[3 Marks]

ii. Correlogram of the squared residuals for test hetroscedasticity from Figure 1.4.[4 Marks]

QUESTION FIVE (15 MARKS)

Suppose the following equations were set up as a simple macroeconomic model of USA. Altogether 2 mutually dependent Y variables were simultaneously determined by 3 predetermined X variables.

$$Y_1 = \gamma_2 Y_2 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$
$$Y_2 = \gamma_1 Y_1 + \beta_3 X_3 + \epsilon$$

a) Outline how you would estimate:

- i. The first equation
- ii. The second equation

(2 marks) (2 marks) b) Now consider a smaller simultaneous system than the one in (a) with two mutually dependent Y variables and just 1 predetermine X variable.

$$\begin{array}{l} Y_1 = \gamma_2 Y_2 + \epsilon \\ Y_2 = \gamma_1 Y_1 + \beta_1 X_1 + \epsilon \end{array}$$

Y_2	X_1
8	21
15	17
10	20
18	14
15	12
6	24
	8 15 10 18 15

Average 30 12 18

i. Using the above data, derive the 2SLS estimate of the coefficient γ_2 in the first equation. (4 marks)

- ii. Using 2SLS on the second equation set up the appropriate estimating equations for γ_1 and β_1 in symbols and numbers. (4 marks)
- iii. Give reason why you couldn't solve for γ_1 and β_1 ? (3 marks)

END//